Efficient Linear Attention for Fast and Accurate Keypoint Matching

Suwichaya Suwanwimolkul, S. Komorita
{"title":"Efficient Linear Attention for Fast and Accurate Keypoint Matching","authors":"Suwichaya Suwanwimolkul, S. Komorita","doi":"10.1145/3512527.3531369","DOIUrl":null,"url":null,"abstract":"Recently Transformers have provided state-of-the-art performance in sparse matching, crucial to realize high-performance 3D vision applications. Yet, these Transformers lack efficiency due to the quadratic computational complexity of their attention mechanism. To solve this problem, we employ an efficient linear attention for the linear computational complexity. Then, we propose a new attentional aggregation that achieves high accuracy by aggregating both the global and local information from sparse keypoints. To further improve the efficiency, we propose the joint learning of feature matching and description. Our learning enables simpler and faster matching than Sinkhorn, often used in matching the learned descriptors from Transformers. Our method achieves competitive performance with only 0.84M learnable parameters against the bigger SOTAs, SuperGlue (12M parameters) and SGMNet (30M parameters), on three benchmarks, HPatch, ETH, Aachen Day-Night.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Recently Transformers have provided state-of-the-art performance in sparse matching, crucial to realize high-performance 3D vision applications. Yet, these Transformers lack efficiency due to the quadratic computational complexity of their attention mechanism. To solve this problem, we employ an efficient linear attention for the linear computational complexity. Then, we propose a new attentional aggregation that achieves high accuracy by aggregating both the global and local information from sparse keypoints. To further improve the efficiency, we propose the joint learning of feature matching and description. Our learning enables simpler and faster matching than Sinkhorn, often used in matching the learned descriptors from Transformers. Our method achieves competitive performance with only 0.84M learnable parameters against the bigger SOTAs, SuperGlue (12M parameters) and SGMNet (30M parameters), on three benchmarks, HPatch, ETH, Aachen Day-Night.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有效的线性关注快速和准确的关键点匹配
最近,变形金刚提供了最先进的稀疏匹配性能,这对于实现高性能3D视觉应用至关重要。然而,这些变压器由于其注意机制的二次计算复杂性而缺乏效率。为了解决这个问题,我们对线性计算复杂度采用了有效的线性关注。然后,我们提出了一种新的注意力聚合方法,通过从稀疏的关键点中聚合全局和局部信息来达到较高的精度。为了进一步提高效率,我们提出了特征匹配和描述的联合学习。我们的学习实现了比Sinkhorn更简单和更快的匹配,后者通常用于匹配《变形金刚》中的学习描述符。在HPatch、ETH、Aachen Day-Night三个基准测试上,我们的方法仅以0.84M可学习参数与更大的sota SuperGlue (12M参数)和SGMNet (30M参数)相比,取得了具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Lifting: A Novel Framework for Unsupervised Voice-Face Association Learning DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition Revisiting Performance Measures for Cross-Modal Hashing MFGAN: A Lightweight Fast Multi-task Multi-scale Feature-fusion Model based on GAN Weakly Supervised Fine-grained Recognition based on Combined Learning for Small Data and Coarse Label
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1