A Computation Modification for Multi-layered Neural Network Using Extended Kalman Filter

Kyungsup Kim, Hui-Joon Kim, Yu-Jae Won
{"title":"A Computation Modification for Multi-layered Neural Network Using Extended Kalman Filter","authors":"Kyungsup Kim, Hui-Joon Kim, Yu-Jae Won","doi":"10.1145/3177457.3177463","DOIUrl":null,"url":null,"abstract":"A lot of learning algorithms for deep layered network are sincerely suffered from complex computation and slow convergence because of a very large number of free parameters. We need to develop an efficient algorithm for deep neural network. The Kalman filter concept can be applied to parameter estimation of neural network to improve computation performance. The algorithms based extended Kalman filter has a serious drawback in its computational complexity. We discuss how a fast algorithm should be developed for reduction in computation time.","PeriodicalId":297531,"journal":{"name":"Proceedings of the 10th International Conference on Computer Modeling and Simulation","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3177457.3177463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A lot of learning algorithms for deep layered network are sincerely suffered from complex computation and slow convergence because of a very large number of free parameters. We need to develop an efficient algorithm for deep neural network. The Kalman filter concept can be applied to parameter estimation of neural network to improve computation performance. The algorithms based extended Kalman filter has a serious drawback in its computational complexity. We discuss how a fast algorithm should be developed for reduction in computation time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩展卡尔曼滤波的多层神经网络计算修正
许多深层网络的学习算法由于自由参数非常多,计算复杂,收敛速度慢。我们需要开发一种有效的深度神经网络算法。将卡尔曼滤波的概念应用到神经网络的参数估计中,可以提高神经网络的计算性能。基于扩展卡尔曼滤波的算法在计算复杂度方面存在严重的缺点。我们讨论了如何开发快速算法以减少计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
rTuner: A Performance Enhancement of MapReduce Job Sensitivity Analysis of a Causality-Informed Genetic Programming Ensemble for Inferring Dynamical Systems Improving Efficiency of TV PCB Assembly Line Using a Discrete Event Simulation Approach: A Case Study Workflow for Developing High-Resolution 3D City Models in Korea Standard Values of Service Level of Intersection for Collection and Distribution Roads of Container Terminals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1