Fault Detection and Localization in Smart Grid: A Probabilistic Dependence Graph Approach

Miao He, Junshan Zhang
{"title":"Fault Detection and Localization in Smart Grid: A Probabilistic Dependence Graph Approach","authors":"Miao He, Junshan Zhang","doi":"10.1109/SMARTGRID.2010.5622016","DOIUrl":null,"url":null,"abstract":"Fault localization in the nation's power grid networks is known to be challenging, due to the massive scale and inherent complexity. In this study, we model the phasor angles across the buses as a Gaussian Markov random field (GMRF), where the partial correlation coefficients of GMRF are quantified in terms of the physical parameters of power systems. We then take the GMRF-based approach for fault diagnosis, through change detection and localization in the partial correlation matrix of GMRF. Specifically, we take advantage of the topological hierarchy of power systems, and devise a multi-resolution inference algorithm for fault localization, in a distributed manner. Simulation results are used to demonstrate the effectiveness of the proposed approach","PeriodicalId":106908,"journal":{"name":"2010 First IEEE International Conference on Smart Grid Communications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 First IEEE International Conference on Smart Grid Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTGRID.2010.5622016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Fault localization in the nation's power grid networks is known to be challenging, due to the massive scale and inherent complexity. In this study, we model the phasor angles across the buses as a Gaussian Markov random field (GMRF), where the partial correlation coefficients of GMRF are quantified in terms of the physical parameters of power systems. We then take the GMRF-based approach for fault diagnosis, through change detection and localization in the partial correlation matrix of GMRF. Specifically, we take advantage of the topological hierarchy of power systems, and devise a multi-resolution inference algorithm for fault localization, in a distributed manner. Simulation results are used to demonstrate the effectiveness of the proposed approach
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能电网故障检测与定位:一种概率依赖图方法
由于大规模和固有的复杂性,国家电网的故障定位是一项具有挑战性的工作。在本研究中,我们将母线上的相角建模为高斯马尔可夫随机场(GMRF),其中GMRF的偏相关系数根据电力系统的物理参数进行量化。然后,通过对GMRF的偏相关矩阵进行变化检测和定位,采用基于GMRF的方法进行故障诊断。具体而言,我们利用电力系统的拓扑层次结构,以分布式的方式设计了一种多分辨率推理算法用于故障定位。仿真结果验证了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spectrum for Smart Grid: Policy Recommendations Enabling Current and Future Applications Privacy for Smart Meters: Towards Undetectable Appliance Load Signatures Quality of Service Networking for Smart Grid Distribution Monitoring The POWER of Networking: How Networking Can Help Power Management Hydro: A Hybrid Routing Protocol for Low-Power and Lossy Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1