Inshore ship detection based on multi-aspect information in high-resolution SAR images

Xiyue Hou, Feng Xu
{"title":"Inshore ship detection based on multi-aspect information in high-resolution SAR images","authors":"Xiyue Hou, Feng Xu","doi":"10.1109/APSAR46974.2019.9048428","DOIUrl":null,"url":null,"abstract":"A novel algorithm for inshore ship detection based on multi-aspect information in high-resolution Synthetic Aperture Radar (SAR) images is proposed. Based on the internal and external characteristics of inshore ship and harbor regions, multi-aspect information, including coastline information, context information, scattering mechanism, shape contour and deep feature information, are considered respectively to detect inshore ship targets. The algorithm is verified to be robust and efficient to exact the Region-of-Interest (ROI) of inshore ship, and achieve a good performance with detection rate 94.24%. Experiments demonstrate good performance with detection rate 94.24%. The results show that the method is simple and robust, which can effectively determine the Region-of-Interest (ROI) of inshore ship.","PeriodicalId":377019,"journal":{"name":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR46974.2019.9048428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A novel algorithm for inshore ship detection based on multi-aspect information in high-resolution Synthetic Aperture Radar (SAR) images is proposed. Based on the internal and external characteristics of inshore ship and harbor regions, multi-aspect information, including coastline information, context information, scattering mechanism, shape contour and deep feature information, are considered respectively to detect inshore ship targets. The algorithm is verified to be robust and efficient to exact the Region-of-Interest (ROI) of inshore ship, and achieve a good performance with detection rate 94.24%. Experiments demonstrate good performance with detection rate 94.24%. The results show that the method is simple and robust, which can effectively determine the Region-of-Interest (ROI) of inshore ship.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高分辨率SAR图像多方向信息的近岸船舶检测
提出了一种基于高分辨率合成孔径雷达(SAR)图像多方向信息的近岸船舶检测新算法。基于近岸船舶和港口区域的内外特征,分别考虑海岸线信息、上下文信息、散射机制、形状轮廓和深度特征信息等多方面信息来检测近岸船舶目标。实验结果表明,该算法对近海船舶感兴趣区域(ROI)具有较好的鲁棒性和准确性,检测率达到94.24%。实验结果表明,检测率为94.24%,具有良好的性能。结果表明,该方法简单、鲁棒性好,可以有效地确定近海船舶的感兴趣区域(ROI)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Simulation Analysis of Missile-borne SAR System Dual-Frequency Interferometric Performance Simulation of UAV Dupa-SAR Influence of Elevation and Orbit Interpolation on the Accuracy of R-D Location Model Approximation for the Statistics of the Optimal Polarimetric Detector in K-Wishart model An Approach for Spaceborne InSAR DEM Inversion Integrated with Stereo-SAR Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1