DeepHyper: Asynchronous Hyperparameter Search for Deep Neural Networks

Prasanna Balaprakash, Michael A. Salim, T. Uram, V. Vishwanath, Stefan M. Wild
{"title":"DeepHyper: Asynchronous Hyperparameter Search for Deep Neural Networks","authors":"Prasanna Balaprakash, Michael A. Salim, T. Uram, V. Vishwanath, Stefan M. Wild","doi":"10.1109/HiPC.2018.00014","DOIUrl":null,"url":null,"abstract":"Hyperparameters employed by deep learning (DL) methods play a substantial role in the performance and reliability of these methods in practice. Unfortunately, finding performance optimizing hyperparameter settings is a notoriously difficult task. Hyperparameter search methods typically have limited production-strength implementations or do not target scalability within a highly parallel machine, portability across different machines, experimental comparison between different methods, and tighter integration with workflow systems. In this paper, we present DeepHyper, a Python package that provides a common interface for the implementation and study of scalable hyperparameter search methods. It adopts the Balsam workflow system to hide the complexities of running large numbers of hyperparameter configurations in parallel on high-performance computing (HPC) systems. We implement and study asynchronous model-based search methods that consist of sampling a small number of input hyperparameter configurations and progressively fitting surrogate models over the input-output space until exhausting a user-defined budget of evaluations. We evaluate the efficacy of these methods relative to approaches such as random search, genetic algorithms, Bayesian optimization, and hyperband on DL benchmarks on CPU-and GPU-based HPC systems.","PeriodicalId":113335,"journal":{"name":"2018 IEEE 25th International Conference on High Performance Computing (HiPC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on High Performance Computing (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC.2018.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

Abstract

Hyperparameters employed by deep learning (DL) methods play a substantial role in the performance and reliability of these methods in practice. Unfortunately, finding performance optimizing hyperparameter settings is a notoriously difficult task. Hyperparameter search methods typically have limited production-strength implementations or do not target scalability within a highly parallel machine, portability across different machines, experimental comparison between different methods, and tighter integration with workflow systems. In this paper, we present DeepHyper, a Python package that provides a common interface for the implementation and study of scalable hyperparameter search methods. It adopts the Balsam workflow system to hide the complexities of running large numbers of hyperparameter configurations in parallel on high-performance computing (HPC) systems. We implement and study asynchronous model-based search methods that consist of sampling a small number of input hyperparameter configurations and progressively fitting surrogate models over the input-output space until exhausting a user-defined budget of evaluations. We evaluate the efficacy of these methods relative to approaches such as random search, genetic algorithms, Bayesian optimization, and hyperband on DL benchmarks on CPU-and GPU-based HPC systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
deepyper:深度神经网络的异步超参数搜索
在实践中,深度学习方法所采用的超参数对这些方法的性能和可靠性起着重要的作用。不幸的是,查找性能优化超参数设置是一项非常困难的任务。超参数搜索方法通常具有有限的生产强度实现,或者不针对高度并行机器中的可伸缩性、不同机器之间的可移植性、不同方法之间的实验比较以及与工作流系统的更紧密集成。在本文中,我们介绍了DeepHyper,这是一个Python包,它为实现和研究可伸缩的超参数搜索方法提供了一个通用接口。它采用Balsam工作流系统来隐藏在高性能计算(HPC)系统上并行运行大量超参数配置的复杂性。我们实现和研究了基于异步模型的搜索方法,该方法包括对少量输入超参数配置进行采样,并在输入-输出空间上逐步拟合代理模型,直到耗尽用户定义的评估预算。我们在基于cpu和gpu的高性能计算系统的DL基准上评估了这些方法相对于随机搜索、遗传算法、贝叶斯优化和超频带等方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Workflow Simulation Aware and Multi-threading Effective Task Scheduling for Heterogeneous Computing Parallel Read Partitioning for Concurrent Assembly of Metagenomic Data Decentralized Privacy-Preserving Timed Execution in Blockchain-Based Smart Contract Platforms OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and Volta GPUs for Out-of-Core DNN Training Dynamic Count-Min Sketch for Analytical Queries Over Continuous Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1