Detection and emphatic realization of contrastive word pairs for expressive text-to-speech synthesis

Chun Xing Li, Zhiyong Wu, Fanbo Meng, H. Meng, Lianhong Cai
{"title":"Detection and emphatic realization of contrastive word pairs for expressive text-to-speech synthesis","authors":"Chun Xing Li, Zhiyong Wu, Fanbo Meng, H. Meng, Lianhong Cai","doi":"10.1109/ISCSLP.2012.6423493","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of automatic detection of contrastive word pairs and their acoustic realization in emphasis for expressive text-to-speech (TTS) synthesis in English. Support vector machines (SVMs) have been used to automatically detect contrastive word pairs from lexical features, syntactic dependencies and semantic relations. A much better performance is achieved by adding accent ratio and word identity features. Hidden Markov model (HMM) based speech synthesis is then used to generate emphatic speeches by putting emphasis on the detected contrastive word pairs. Subjective experiments show that most of the listeners consider putting emphasis on contrastive word pairs is more acceptable than on non-contrastive word pairs. This indicates the importance of the accurate detection of contrastive word pairs.","PeriodicalId":186099,"journal":{"name":"2012 8th International Symposium on Chinese Spoken Language Processing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP.2012.6423493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper addresses the problem of automatic detection of contrastive word pairs and their acoustic realization in emphasis for expressive text-to-speech (TTS) synthesis in English. Support vector machines (SVMs) have been used to automatically detect contrastive word pairs from lexical features, syntactic dependencies and semantic relations. A much better performance is achieved by adding accent ratio and word identity features. Hidden Markov model (HMM) based speech synthesis is then used to generate emphatic speeches by putting emphasis on the detected contrastive word pairs. Subjective experiments show that most of the listeners consider putting emphasis on contrastive word pairs is more acceptable than on non-contrastive word pairs. This indicates the importance of the accurate detection of contrastive word pairs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
文本-语音合成中对比词对的检测和重点实现
本文重点研究了英语文本到语音表达合成中对比词对的自动检测及其声学实现问题。支持向量机(svm)已被用于从词汇特征、句法依赖和语义关系等方面自动检测对比词对。通过添加重音比和单词身份特征,可以获得更好的性能。基于隐马尔可夫模型(HMM)的语音合成将重点放在检测到的对比词对上,从而生成强调语音。主观实验表明,大多数听者认为强调对比词对比强调非对比词对更容易接受。这表明准确检测对比词对的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Noise-robust whispered speech recognition using a non-audible-murmur microphone with VTS compensation Effects of excitation spread on the intelligibility of Mandarin speech in cochlear implant simulations A comparative study of fMPE and RDLT approaches to LVCSR Keyword-specific normalization based keyword spotting for spontaneous speech A unified trajectory tiling approach to high quality TTS and cross-lingual voice transformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1