Chen-Yu Yang, Georgina Brown, Liang Lu, J. Yamagishi, Simon King
{"title":"Noise-robust whispered speech recognition using a non-audible-murmur microphone with VTS compensation","authors":"Chen-Yu Yang, Georgina Brown, Liang Lu, J. Yamagishi, Simon King","doi":"10.1109/ISCSLP.2012.6423522","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a newly-created corpus of whispered speech simultaneously recorded via a close-talking microphone and a non-audible murmur (NAM) microphone in both clean and noisy conditions. To benchmark the corpus, which has been freely released recently, experiments on automatic recognition of continuous whispered speech were conducted. When training and test conditions are matched, the NAM microphone is found to be more robust against background noise than the close-talking microphone. In mismatched conditions (noisy data, models trained on clean speech), we found that Vector Taylor Series (VTS) compensation is particularly effective for the NAM signal.","PeriodicalId":186099,"journal":{"name":"2012 8th International Symposium on Chinese Spoken Language Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP.2012.6423522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
In this paper, we introduce a newly-created corpus of whispered speech simultaneously recorded via a close-talking microphone and a non-audible murmur (NAM) microphone in both clean and noisy conditions. To benchmark the corpus, which has been freely released recently, experiments on automatic recognition of continuous whispered speech were conducted. When training and test conditions are matched, the NAM microphone is found to be more robust against background noise than the close-talking microphone. In mismatched conditions (noisy data, models trained on clean speech), we found that Vector Taylor Series (VTS) compensation is particularly effective for the NAM signal.