NSP-CNN Rolling Bearing Fault Diagnosis Method

Pang Xin-yu, Tong Yu, Zhang Bo-wen, Wei Ji-gui
{"title":"NSP-CNN Rolling Bearing Fault Diagnosis Method","authors":"Pang Xin-yu, Tong Yu, Zhang Bo-wen, Wei Ji-gui","doi":"10.1109/PHM-Nanjing52125.2021.9613092","DOIUrl":null,"url":null,"abstract":"The vibration signal of rolling bearing has non-stationary and nonlinear characteristics. In order to apply the advantages of deep learning recognition of 2-D images to the fault diagnosis of rolling bearings, a multi-layer nested scatter plot-convolutional neural network (NSP-CNN) rolling bearing fault diagnosis model is proposed. The model uses fast Fourier transform to obtain the frequency spectrum of the vibration signal in different directions, and divides the frequency bands. After that, the signals of different bandwidths are given different colors to highlight the fault information of the rolling bearing. Finally, the combined NSP The optimized CNN model is input to the feature map to realize fault diagnosis. The results show that the model can achieve high diagnostic accuracy when diagnosing rolling bearing faults.","PeriodicalId":436428,"journal":{"name":"2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM-Nanjing52125.2021.9613092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The vibration signal of rolling bearing has non-stationary and nonlinear characteristics. In order to apply the advantages of deep learning recognition of 2-D images to the fault diagnosis of rolling bearings, a multi-layer nested scatter plot-convolutional neural network (NSP-CNN) rolling bearing fault diagnosis model is proposed. The model uses fast Fourier transform to obtain the frequency spectrum of the vibration signal in different directions, and divides the frequency bands. After that, the signals of different bandwidths are given different colors to highlight the fault information of the rolling bearing. Finally, the combined NSP The optimized CNN model is input to the feature map to realize fault diagnosis. The results show that the model can achieve high diagnostic accuracy when diagnosing rolling bearing faults.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NSP-CNN滚动轴承故障诊断方法
滚动轴承的振动信号具有非平稳和非线性的特点。为了将深度学习识别二维图像的优势应用到滚动轴承故障诊断中,提出了一种多层嵌套散点图-卷积神经网络(NSP-CNN)滚动轴承故障诊断模型。该模型利用快速傅里叶变换获得振动信号在不同方向上的频谱,并进行频段划分。然后,对不同带宽的信号赋予不同的颜色,以突出显示滚动轴承的故障信息。最后,将组合NSP优化后的CNN模型输入到特征映射中,实现故障诊断。结果表明,该模型在滚动轴承故障诊断中具有较高的诊断精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Multi-channel Transfer Learning Framework for Fault Diagnosis of Axial Piston Pump The Effects of Constructing National Innovative Cities on Foreign Direct Investment A multi-synchrosqueezing ridge extraction transform for the analysis of non-stationary multi-component signals Fault Diagnosis Method of Analog Circuit Based on Enhanced Boundary Equilibrium Generative Adversarial Networks Remaining Useful Life Prediction of Mechanical Equipment Based on Temporal Convolutional Network and Asymmetric Loss Function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1