The optimization of PLP feature extraction for LVCSR recognition of MP3 data

M. Borský, P. Pollák
{"title":"The optimization of PLP feature extraction for LVCSR recognition of MP3 data","authors":"M. Borský, P. Pollák","doi":"10.1109/AE.2014.7011667","DOIUrl":null,"url":null,"abstract":"This paper analyses the contribution of optimized PLP feature extraction setup and application of feature normalization to improve the performance of automatic speech recognition system for data compressed by MP3 algorithm. The experimental study performed on loop-digit recognition and large vocabulary continues speech recognition task showed that proper setup can negate the effect of lower compression rates which can achieve results comparable with higher rates. The second finding is that the normalization techniques contribute significantly to overall performance, especially for shorter windows/shifts and lower compression rates. The acoustic models trained on 160kbits/s, 32kbits/s and 16kbits/s data performed at 34.17%, 41.88% and 36.4% WER respectively on LVCSR task. In comparison the non-compressed acoustic models performed at 28.56% WER.","PeriodicalId":149779,"journal":{"name":"2014 International Conference on Applied Electronics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Applied Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AE.2014.7011667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyses the contribution of optimized PLP feature extraction setup and application of feature normalization to improve the performance of automatic speech recognition system for data compressed by MP3 algorithm. The experimental study performed on loop-digit recognition and large vocabulary continues speech recognition task showed that proper setup can negate the effect of lower compression rates which can achieve results comparable with higher rates. The second finding is that the normalization techniques contribute significantly to overall performance, especially for shorter windows/shifts and lower compression rates. The acoustic models trained on 160kbits/s, 32kbits/s and 16kbits/s data performed at 34.17%, 41.88% and 36.4% WER respectively on LVCSR task. In comparison the non-compressed acoustic models performed at 28.56% WER.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MP3数据LVCSR识别的PLP特征提取优化
本文分析了优化的PLP特征提取设置和特征归一化的应用对提高MP3算法压缩数据的自动语音识别系统性能的贡献。对循环数字识别和大词汇量连续语音识别任务的实验研究表明,适当的设置可以抵消低压缩率的影响,从而达到与高压缩率相当的效果。第二个发现是,标准化技术对整体性能有显著贡献,特别是对于更短的窗口/移位和更低的压缩率。在160kbits/s、32kbits/s和16kbits/s数据下训练的声学模型在LVCSR任务上的降噪率分别为34.17%、41.88%和36.4%。相比之下,非压缩声学模型的噪声比为28.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D FEM simulation of small stripline for EMC testing Effect of dead times on the values of input current harmonics drawn from the grid by a voltage-source active rectifier Desktop based real time oxygen auto-ventilation and gas monitoring system for homecare respiratory application Fuzzy expert system for determining the human gait phase Dead-time compensation strategy with adaptive harmonic compensator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1