Multiple feature combination to improve speaker diarization of telephone conversations

Vishwa Gupta, P. Kenny, P. Ouellet, Gilles Boulianne, P. Dumouchel
{"title":"Multiple feature combination to improve speaker diarization of telephone conversations","authors":"Vishwa Gupta, P. Kenny, P. Ouellet, Gilles Boulianne, P. Dumouchel","doi":"10.1109/ASRU.2007.4430198","DOIUrl":null,"url":null,"abstract":"We report results on speaker diarization of telephone conversations. This speaker diarization process is similar to the multistage segmentation and clustering system used in broadcast news. It consists of an initial acoustic change point detection algorithm, iterative Viterbi re-segmentation, gender labeling, agglomerative clustering using a Bayesian information criterion (BIC), followed by agglomerative clustering using state-of-the-art speaker identification methods (SID) and Viterbi re-segmentation using Gaussian mixture models (GMMs). The Viterbi re-segmentation using GMMs is new, and it reduces the diarization error rate (DER) by 10%. We repeat these multistage segmentation and clustering steps twice: once with MFCCs as feature parameters for the GMMs used in gender labeling, SID and Viterbi re-segmentation steps, and another time with Gaussianized MFCCs as feature parameters for the GMMs used in these three steps. The resulting clusters from the parallel runs are combined in a novel way that leads to a significant reduction in the DER. On a development set containing 30 telephone conversations, this combination step reduced the DER by 20%. On another test set containing 30 telephone conversations, this step reduced the DER by 13%. The best error rate we have achieved is 6.7% on the development set, and 9.0% on the test set.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We report results on speaker diarization of telephone conversations. This speaker diarization process is similar to the multistage segmentation and clustering system used in broadcast news. It consists of an initial acoustic change point detection algorithm, iterative Viterbi re-segmentation, gender labeling, agglomerative clustering using a Bayesian information criterion (BIC), followed by agglomerative clustering using state-of-the-art speaker identification methods (SID) and Viterbi re-segmentation using Gaussian mixture models (GMMs). The Viterbi re-segmentation using GMMs is new, and it reduces the diarization error rate (DER) by 10%. We repeat these multistage segmentation and clustering steps twice: once with MFCCs as feature parameters for the GMMs used in gender labeling, SID and Viterbi re-segmentation steps, and another time with Gaussianized MFCCs as feature parameters for the GMMs used in these three steps. The resulting clusters from the parallel runs are combined in a novel way that leads to a significant reduction in the DER. On a development set containing 30 telephone conversations, this combination step reduced the DER by 20%. On another test set containing 30 telephone conversations, this step reduced the DER by 13%. The best error rate we have achieved is 6.7% on the development set, and 9.0% on the test set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多种功能组合,提高电话通话的说话人拨号化
我们报告了电话谈话的说话人拨号化的结果。这种说话人分化过程类似于广播新闻中使用的多阶段分割和聚类系统。它包括初始声学变化点检测算法,迭代Viterbi再分割,性别标记,使用贝叶斯信息准则(BIC)的聚集聚类,然后使用最先进的说话人识别方法(SID)的聚集聚类和使用高斯混合模型(GMMs)的Viterbi再分割。基于GMMs的Viterbi再分割方法是一种新的分割方法,它将分割错误率降低了10%。我们将这些多阶段分割和聚类步骤重复两次:一次使用mfccc作为性别标记、SID和Viterbi再分割步骤中使用的gmm的特征参数,另一次使用高斯化mfccc作为这三个步骤中使用的gmm的特征参数。并行运行产生的集群以一种新颖的方式组合在一起,从而显著降低了DER。在包含30个电话会话的开发集上,此组合步骤将DER降低了20%。在另一个包含30个电话交谈的测试集中,这一步骤使DER降低了13%。我们在开发集上达到的最佳错误率是6.7%,在测试集上是9.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive linear transforms for noise robust speech recognition Development of a phonetic system for large vocabulary Arabic speech recognition Error simulation for training statistical dialogue systems An enhanced minimum classification error learning framework for balancing insertion, deletion and substitution errors Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1