Adam Kiersztyn, Paweł Karczmarek, Krystyna Kiersztyn, R. Lopucki, S. Grzegórski, W. Pedrycz
{"title":"The Concept of Granular Representation of the Information Potential of Variables","authors":"Adam Kiersztyn, Paweł Karczmarek, Krystyna Kiersztyn, R. Lopucki, S. Grzegórski, W. Pedrycz","doi":"10.1109/FUZZ45933.2021.9494582","DOIUrl":null,"url":null,"abstract":"With the advent of research into Granular Computing, in particular information granules, the way of thinking about data has changed gradually. Researchers and practitioners do not consider only their specific properties, but also try to look at the data in a more general way, closer to the way people think. This kind of knowledge representation is expressed particularly in approaches based on linguistic modeling or fuzzy techniques such as fuzzy clustering, but also newer approaches related to the explanation of how artificial intelligence works on these data (so-called explainable artificial intelligence). Therefore, especially important from the point of view of the methodology of data research is an attempt to understand their potential as information granules. Such a kind of approach to data presentation and analysis may introduce considerations of a higher, more general level of abstraction, while at the same time reliably describing the network of relationships between the data and the observed information granules. In this study, we tackle this topic with particular emphasis on the problem of choosing a predictive model. In a series of numerical experiments based on both artificially generated data, ecological data on changes in bird arrival dates in the context of climate change, and COVID-19 infections data we demonstrate the effectiveness of the proposed approach built with a novel application of information potential granules.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
With the advent of research into Granular Computing, in particular information granules, the way of thinking about data has changed gradually. Researchers and practitioners do not consider only their specific properties, but also try to look at the data in a more general way, closer to the way people think. This kind of knowledge representation is expressed particularly in approaches based on linguistic modeling or fuzzy techniques such as fuzzy clustering, but also newer approaches related to the explanation of how artificial intelligence works on these data (so-called explainable artificial intelligence). Therefore, especially important from the point of view of the methodology of data research is an attempt to understand their potential as information granules. Such a kind of approach to data presentation and analysis may introduce considerations of a higher, more general level of abstraction, while at the same time reliably describing the network of relationships between the data and the observed information granules. In this study, we tackle this topic with particular emphasis on the problem of choosing a predictive model. In a series of numerical experiments based on both artificially generated data, ecological data on changes in bird arrival dates in the context of climate change, and COVID-19 infections data we demonstrate the effectiveness of the proposed approach built with a novel application of information potential granules.