An experimental approach for prediction of multi-classification using SVM

Karthik, Pavan Kumar Reddy B
{"title":"An experimental approach for prediction of multi-classification using SVM","authors":"Karthik, Pavan Kumar Reddy B","doi":"10.33545/27076636.2021.v2.i2a.30","DOIUrl":null,"url":null,"abstract":"The multiclass classification problem is an important topic in the field of pattern recognition. It involves the task of classifying input instances into one of multiple classes. Since the class overlapping problem exists among multiple classes in most real-world problems, the multiclass classification task is much more complicated and challenging compared to the binary class problem. Classification involves the learning of the mapping function that associates input samples to corresponding target label. There are two major categories of classification problems: Single-label classification and multi-label classification. Traditional binary and multi-class classifications are subcategories of single-label classification. The performance of the developed classifier is evaluated using datasets from binary, multi-class and multi-label problems. The results obtained are compared with state-of-the-art techniques from each of the classification types","PeriodicalId":127185,"journal":{"name":"International Journal of Computing, Programming and Database Management","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing, Programming and Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33545/27076636.2021.v2.i2a.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The multiclass classification problem is an important topic in the field of pattern recognition. It involves the task of classifying input instances into one of multiple classes. Since the class overlapping problem exists among multiple classes in most real-world problems, the multiclass classification task is much more complicated and challenging compared to the binary class problem. Classification involves the learning of the mapping function that associates input samples to corresponding target label. There are two major categories of classification problems: Single-label classification and multi-label classification. Traditional binary and multi-class classifications are subcategories of single-label classification. The performance of the developed classifier is evaluated using datasets from binary, multi-class and multi-label problems. The results obtained are compared with state-of-the-art techniques from each of the classification types
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的多分类预测实验方法
多类分类问题是模式识别领域的一个重要课题。它涉及到将输入实例分类为多个类之一的任务。由于现实世界中大多数问题都存在多类之间的类重叠问题,因此多类分类任务比二分类问题更加复杂和具有挑战性。分类涉及到映射函数的学习,映射函数将输入样本关联到相应的目标标签。分类问题主要有两大类:单标签分类和多标签分类。传统的二元分类和多类分类是单标签分类的子类别。使用二值、多类和多标签问题的数据集来评估所开发的分类器的性能。所获得的结果将与每种分类类型的最先进技术进行比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive analytics driven time oriented prioritized task assistant under the framework of machine intelligence Review on a rule based approach to align natural language with query language Effect of the internet on library and information services On control of movement of a ship with account of changing of load On approach to optimize manufacturing of field-effect transistors framework a conventional full-bridge converter to increase their integration rate: On influence mismatch-induced stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1