Comparison of Image Restoration using Median, Wiener, and Gaussian Filtering Techniques based on Electrical Tree

C. S. K. Abdulah, M. Rohani, B. Ismail, M. Isa, A. S. Rosmi, W. Mustafa
{"title":"Comparison of Image Restoration using Median, Wiener, and Gaussian Filtering Techniques based on Electrical Tree","authors":"C. S. K. Abdulah, M. Rohani, B. Ismail, M. Isa, A. S. Rosmi, W. Mustafa","doi":"10.1109/IEACon51066.2021.9654752","DOIUrl":null,"url":null,"abstract":"Electrical treeing lead to a major cause of a breakdown in solid insulation. Thus reduced solid insulation performance by degrading the insulation. Hence, it is important to study the electrical treeing and learn the root cause of the treeing formation. In this paper, the performances of median, wiener, and gaussian filters in restoring noisy images are studied based on electrical tree images. The electrical tree colour images is being transform into grayscale images, noisy images using impulse noise (salt and pepper), and finally motion blur are applied. Even though, there are several number of filters available, this paper focus on median, wiener, gaussian, and combination of the filters. In the end, comparison between these filters is made to study the efficiency using PSNR, SNR, and MSE in graph form.","PeriodicalId":397039,"journal":{"name":"2021 IEEE Industrial Electronics and Applications Conference (IEACon)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Industrial Electronics and Applications Conference (IEACon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEACon51066.2021.9654752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrical treeing lead to a major cause of a breakdown in solid insulation. Thus reduced solid insulation performance by degrading the insulation. Hence, it is important to study the electrical treeing and learn the root cause of the treeing formation. In this paper, the performances of median, wiener, and gaussian filters in restoring noisy images are studied based on electrical tree images. The electrical tree colour images is being transform into grayscale images, noisy images using impulse noise (salt and pepper), and finally motion blur are applied. Even though, there are several number of filters available, this paper focus on median, wiener, gaussian, and combination of the filters. In the end, comparison between these filters is made to study the efficiency using PSNR, SNR, and MSE in graph form.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于电树的中值滤波、维纳滤波和高斯滤波图像恢复的比较
电气树是固体绝缘击穿的主要原因。从而通过降低绝缘性降低固体绝缘性能。因此,研究电树形和了解树形形成的根本原因是很重要的。本文研究了基于电树图像的中值滤波器、维纳滤波器和高斯滤波器在恢复噪声图像中的性能。将电子树彩色图像转换为灰度图像,使用脉冲噪声(盐和胡椒)将噪声图像转换为噪声图像,最后应用运动模糊。尽管有几种可用的滤波器,但本文主要关注中值滤波器、维纳滤波器、高斯滤波器和滤波器的组合。最后,对这些滤波器进行比较,以图的形式使用PSNR、SNR和MSE来研究效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integration on VVVF Drive System for Induction Motor Speed Control with Lookup Table Multiband Frequency of 4th Order Hilbert Fractal UHF Sensor Modelling for Partial Discharge Detection in Power Transformer Simplified Power Estimation Feedforward to Reduce DC-Link Capacitance in Single-Phase Dual-Stage Full-Bridge Microinverter PSO-Optimized CoVID-19 MLP-NARX Mortality Prediction Model Cost-effective Energy Optimization and Indoor Surveillance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1