F. Starzer, H. Forstner, C. Wagner, R. Feger, S. Scheiblhofer, A. Fischer, H. Jager, A. Stelzer
{"title":"A novel 77-GHz radar frontend with 19-GHz signal distribution on RF-PCB substrate","authors":"F. Starzer, H. Forstner, C. Wagner, R. Feger, S. Scheiblhofer, A. Fischer, H. Jager, A. Stelzer","doi":"10.1109/SMIC.2010.5422941","DOIUrl":null,"url":null,"abstract":"A novel radar frontend for 77 GHz mid-range-radar (MRR) and short-range-radar (SRR) applications is presented. The radar sensor makes use of a Colpitts oscillator, frequency multipliers, and a transceive (TRX) mixer. A single sensor contains up to four channels using antenna arrays for angular detection relative to the sensor. The characterization of the integrated circuit's parameters has been carried out using a two-channel sensor with waveguide (WG) transitions. A radar measurement scenario has been realized using a four-channel sensor with a differential antenna array. All sensors have been implemented on off-the-shelf printed circuit board (PCB) substrate.","PeriodicalId":334671,"journal":{"name":"2010 IEEE Radio and Wireless Symposium (RWS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMIC.2010.5422941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A novel radar frontend for 77 GHz mid-range-radar (MRR) and short-range-radar (SRR) applications is presented. The radar sensor makes use of a Colpitts oscillator, frequency multipliers, and a transceive (TRX) mixer. A single sensor contains up to four channels using antenna arrays for angular detection relative to the sensor. The characterization of the integrated circuit's parameters has been carried out using a two-channel sensor with waveguide (WG) transitions. A radar measurement scenario has been realized using a four-channel sensor with a differential antenna array. All sensors have been implemented on off-the-shelf printed circuit board (PCB) substrate.