SSVEP Signal Detection for BCI Application

P. Prasad, R. Swarnkar, K. Prasad, M. Radhakrishnan, Md. Farukh Hashmi, A. Keskar
{"title":"SSVEP Signal Detection for BCI Application","authors":"P. Prasad, R. Swarnkar, K. Prasad, M. Radhakrishnan, Md. Farukh Hashmi, A. Keskar","doi":"10.1109/IACC.2017.0126","DOIUrl":null,"url":null,"abstract":"Steady State Visually Evoked Potential (SSVEP) is one of the most popularly used signals in Brain Computer Interface (BCI) applications. A new method to detect SSVEP signals of three different frequencies (6Hz, 8Hz and 15Hz) has been proposed. This method uses Fast Walsh Hadamard Transform (FWHT) for feature extraction and Naive Bayes Classifier (NBC) for feature classification. The algorithms used in the proposed method FWHT and NBC consumes vey less memory and also makes the method less computationally complex. The proposed method also uses less execution time making it suitable for real time BCI application.","PeriodicalId":248433,"journal":{"name":"2017 IEEE 7th International Advance Computing Conference (IACC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACC.2017.0126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Steady State Visually Evoked Potential (SSVEP) is one of the most popularly used signals in Brain Computer Interface (BCI) applications. A new method to detect SSVEP signals of three different frequencies (6Hz, 8Hz and 15Hz) has been proposed. This method uses Fast Walsh Hadamard Transform (FWHT) for feature extraction and Naive Bayes Classifier (NBC) for feature classification. The algorithms used in the proposed method FWHT and NBC consumes vey less memory and also makes the method less computationally complex. The proposed method also uses less execution time making it suitable for real time BCI application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BCI应用的SSVEP信号检测
稳态视觉诱发电位(SSVEP)是脑机接口(BCI)应用中最常用的信号之一。提出了一种检测三种不同频率(6Hz, 8Hz和15Hz)的SSVEP信号的新方法。该方法使用快速Walsh Hadamard变换(FWHT)进行特征提取,使用朴素贝叶斯分类器(NBC)进行特征分类。该方法中使用的FWHT和NBC算法消耗的内存更少,计算复杂度也更低。该方法执行时间短,适用于实时BCI应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Randomized Grid-Based Approach for Complete Area Coverage in WSN To Handle Uncertain Data for Medical Diagnosis Purpose Using Neutrosophic Set Variance Based Moving K-Means Algorithm A Feature Subset Based Decision Fusion Approach for Scene Classification Using Color, Spectral, and Texture Statistics Blind Adaptive Beamforming Simulation Using NCMA for Smart Antenna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1