Van-Tinh Nguyen, Tieu-Khanh Luong, Han Le Duc, Van‐Phuc Hoang
{"title":"An Efficient Hardware Implementation of Activation Functions Using Stochastic Computing for Deep Neural Networks","authors":"Van-Tinh Nguyen, Tieu-Khanh Luong, Han Le Duc, Van‐Phuc Hoang","doi":"10.1109/MCSoC2018.2018.00045","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new approximation method for non-linear activation functions including tanh and sigmoid functions using stochastic computing (SC) logic based on the piecewise-linear approximation (PWL) for the full range of [-1, 1]. SC implementations with PWL approximation expansions for non-linear functions are based on a 90nm CMOS process. The implementation results shown that the proposed SC circuits can provide better performance compared with the previous methods such as the well-known Maclaurin expansions based, Bernstein polynomial based and finite-state-machine (FSM) based implementations. The implementation results are also presented and discussed.","PeriodicalId":413836,"journal":{"name":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC2018.2018.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
In this paper, we present a new approximation method for non-linear activation functions including tanh and sigmoid functions using stochastic computing (SC) logic based on the piecewise-linear approximation (PWL) for the full range of [-1, 1]. SC implementations with PWL approximation expansions for non-linear functions are based on a 90nm CMOS process. The implementation results shown that the proposed SC circuits can provide better performance compared with the previous methods such as the well-known Maclaurin expansions based, Bernstein polynomial based and finite-state-machine (FSM) based implementations. The implementation results are also presented and discussed.