Reinforcement Learning for Non-Affine Nonlinear Non-Minimum Phase System Tracking Under Additive-State-Decomposition-Based Control Framework

Lian Chen, Q. Quan
{"title":"Reinforcement Learning for Non-Affine Nonlinear Non-Minimum Phase System Tracking Under Additive-State-Decomposition-Based Control Framework","authors":"Lian Chen, Q. Quan","doi":"10.1109/DDCLS58216.2023.10166298","DOIUrl":null,"url":null,"abstract":"This paper proposes a reinforcement-learning additive-state-decomposition-based tracking controller for a class of non-affine nonlinear non-minimum phase systems. Because the tracking performance is not satisfied with the model-based additive-state-decomposition tracking control with an approximate ideal internal model, two reinforcement learning schemes are introduced to improve the performance under the proposed additive-state-decomposition-based control framework. One is used to generate control commands, and the other is used to generate tracking reference commands. Finally, numerical simulations show the effectiveness of the proposed controller.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10166298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a reinforcement-learning additive-state-decomposition-based tracking controller for a class of non-affine nonlinear non-minimum phase systems. Because the tracking performance is not satisfied with the model-based additive-state-decomposition tracking control with an approximate ideal internal model, two reinforcement learning schemes are introduced to improve the performance under the proposed additive-state-decomposition-based control framework. One is used to generate control commands, and the other is used to generate tracking reference commands. Finally, numerical simulations show the effectiveness of the proposed controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加性状态分解控制框架下非仿射非线性非最小相位系统跟踪的强化学习
针对一类非仿射非线性非最小相位系统,提出了一种基于强化学习加性状态分解的跟踪控制器。针对具有近似理想内模型的基于模型的加性状态分解跟踪控制的跟踪性能不理想的问题,提出了两种强化学习方案来改善基于加性状态分解控制框架下的跟踪性能。一个用于生成控制命令,另一个用于生成跟踪参考命令。最后,通过数值仿真验证了所提控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on target grab of leg-arm cooperative robot based on vision A Review of Sound Source Localization Research in Three-Dimensional Space Improved Mixed Discrete Particle Swarms based Multi-task Assignment for UAVs Dynamical linearization based PLS modeling and model-free adaptive control Hidden Markov model based finite-time H∞ guaranteed cost control for singular discrete-time Markov jump delay systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1