{"title":"Parametric Subpixel Matchpoint Recovery with Uncertainty Estimation: A Statistical Approach","authors":"R. M. Steele, C. Jaynes","doi":"10.1109/CVPRW.2003.10091","DOIUrl":null,"url":null,"abstract":"We present a novel matchpoint acquisition method capable of producing accurate correspondences at subpixel precision. Given the known representation of the point to be matched, such as a projected fiducial in a structured light system, the method estimates the fiducial location and its expected uncertainty. Improved matchpoint precision has application in a number of calibration tasks, and uncertainty estimates can be used to significantly improve overall calibration results. A simple parametric model captures the relationship between the known fiducial and its corresponding position, shape, and intensity on the image plane. For each match-point pair, these unknown model parameters are recovered using maximum likelihood estimation to determine a sub-pixel center for the fiducial. The uncertainty of the match-point center is estimated by performing forward error analysis on the expected image noise. Uncertainty estimates used in conjunction with the accurate matchpoints can improve calibration accuracy for multi-view systems.","PeriodicalId":121249,"journal":{"name":"2003 Conference on Computer Vision and Pattern Recognition Workshop","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Conference on Computer Vision and Pattern Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2003.10091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We present a novel matchpoint acquisition method capable of producing accurate correspondences at subpixel precision. Given the known representation of the point to be matched, such as a projected fiducial in a structured light system, the method estimates the fiducial location and its expected uncertainty. Improved matchpoint precision has application in a number of calibration tasks, and uncertainty estimates can be used to significantly improve overall calibration results. A simple parametric model captures the relationship between the known fiducial and its corresponding position, shape, and intensity on the image plane. For each match-point pair, these unknown model parameters are recovered using maximum likelihood estimation to determine a sub-pixel center for the fiducial. The uncertainty of the match-point center is estimated by performing forward error analysis on the expected image noise. Uncertainty estimates used in conjunction with the accurate matchpoints can improve calibration accuracy for multi-view systems.