Face retriever: Pre-filtering the gallery via deep neural net

Dayong Wang, Anil K. Jain
{"title":"Face retriever: Pre-filtering the gallery via deep neural net","authors":"Dayong Wang, Anil K. Jain","doi":"10.1109/ICB.2015.7139112","DOIUrl":null,"url":null,"abstract":"Face retrieval is an enabling technology for many applications, including automatic face annotation, deduplication, and surveillance. In this paper, we propose a face retrieval system which combines a k-NN search procedure with a COTS matcher (PittPatt1) in a cascaded manner. In particular, given a query face, we first pre-filter the gallery set and find the top-k most similar faces for the query image by using deep facial features that are learned with a deep convolutional neural network. The top-k most similar faces are then re-ranked based on score-level fusion of the similarities between deep features and the COTS matcher. To further boost the retrieval performance, we develop a manifold ranking algorithm. The proposed face retrieval system is evaluated on two large-scale face image databases: (i) a web face image database, which consists of over 3, 880 query images of 1, 507 subjects and a gallery of 5, 000, 000 faces, and (ii) a mugshot database, which consists of 1, 000 query images of 1, 000 subjects and a gallery of 1, 000, 000 faces. Experimental results demonstrate that the proposed face retrieval system can simultaneously improve the retrieval performance (CMC and precision-recall) and scalability for large-scale face retrieval problems.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Face retrieval is an enabling technology for many applications, including automatic face annotation, deduplication, and surveillance. In this paper, we propose a face retrieval system which combines a k-NN search procedure with a COTS matcher (PittPatt1) in a cascaded manner. In particular, given a query face, we first pre-filter the gallery set and find the top-k most similar faces for the query image by using deep facial features that are learned with a deep convolutional neural network. The top-k most similar faces are then re-ranked based on score-level fusion of the similarities between deep features and the COTS matcher. To further boost the retrieval performance, we develop a manifold ranking algorithm. The proposed face retrieval system is evaluated on two large-scale face image databases: (i) a web face image database, which consists of over 3, 880 query images of 1, 507 subjects and a gallery of 5, 000, 000 faces, and (ii) a mugshot database, which consists of 1, 000 query images of 1, 000 subjects and a gallery of 1, 000, 000 faces. Experimental results demonstrate that the proposed face retrieval system can simultaneously improve the retrieval performance (CMC and precision-recall) and scalability for large-scale face retrieval problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人脸检索:通过深度神经网络对图库进行预过滤
人脸检索是许多应用程序的支持技术,包括自动人脸注释、重复数据删除和监视。在本文中,我们提出了一种将k-NN搜索过程与COTS匹配器(PittPatt1)以级联方式相结合的人脸检索系统。特别是,给定一张查询脸,我们首先对图库集进行预过滤,并通过使用深度卷积神经网络学习的深度面部特征,为查询图像找到top-k最相似的脸。然后基于深度特征和COTS匹配器之间相似性的分数级融合,对最相似的k个面孔进行重新排序。为了进一步提高检索性能,我们开发了一种流形排序算法。在两个大型人脸图像数据库上对所提出的人脸检索系统进行了评估:(i)一个web人脸图像数据库,其中包含超过3,880张1,507个受试者的查询图像和5,000,000个人脸库;(ii)一个人脸数据库,其中包含1,000个受试者的1,000张查询图像和1,000,000个人脸库。实验结果表明,所提出的人脸检索系统能够同时提高大规模人脸检索问题的检索性能(CMC和查准率)和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and robust self-training beard/moustache detection and segmentation Composite sketch recognition via deep network - a transfer learning approach Cross-sensor iris verification applying robust fused segmentation algorithms Multi-modal authentication system for smartphones using face, iris and periocular An efficient approach for clustering face images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1