Entity extraction based on the parts of speech attention mechanism

J. Xu, Lijun Wang, Jing Xu, Huan He, Jiaying Li, J. Liao
{"title":"Entity extraction based on the parts of speech attention mechanism","authors":"J. Xu, Lijun Wang, Jing Xu, Huan He, Jiaying Li, J. Liao","doi":"10.1117/12.2667496","DOIUrl":null,"url":null,"abstract":"Entity extraction is an information extraction technique that aims to locate and classify named entities (e.g., organizations, locations, persons...), which is a very important and fundamental problem in natural language processing. On the research of entity extraction, numerous models ignore the learning of grammatical structure. Considering the shortcomings of previous models, this paper first proposes the PALC (POStag-Attention-LSTM-CRF) model, which adds POS (part of speech) features to entity extraction. Specially, PALC fuses POS features with other features through a multi-layer bidirectional LSTM network and attention mechanism to improve the effect of entity extraction. The experimental results show that the accuracy of the PALC model in this paper on the CONLL03 dataset can be 90.65%, on the CONLL03 dataset can be 84.86%, and on OntoNote 5.0 English dataset can be 86.99%.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Entity extraction is an information extraction technique that aims to locate and classify named entities (e.g., organizations, locations, persons...), which is a very important and fundamental problem in natural language processing. On the research of entity extraction, numerous models ignore the learning of grammatical structure. Considering the shortcomings of previous models, this paper first proposes the PALC (POStag-Attention-LSTM-CRF) model, which adds POS (part of speech) features to entity extraction. Specially, PALC fuses POS features with other features through a multi-layer bidirectional LSTM network and attention mechanism to improve the effect of entity extraction. The experimental results show that the accuracy of the PALC model in this paper on the CONLL03 dataset can be 90.65%, on the CONLL03 dataset can be 84.86%, and on OntoNote 5.0 English dataset can be 86.99%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于词性注意机制的实体抽取
实体抽取是一种信息抽取技术,目的是对命名实体(如组织、地点、人员等)进行定位和分类,是自然语言处理中一个非常重要和基础的问题。在实体抽取的研究中,许多模型忽略了语法结构的学习。针对以往模型的不足,本文首先提出了在实体抽取中加入词性特征的PALC (post - attention - lstm - crf)模型。其中,PALC通过多层双向LSTM网络和关注机制将POS特征与其他特征融合,提高实体提取效果。实验结果表明,本文所建立的PALC模型在CONLL03数据集上的准确率可达90.65%,在CONLL03数据集上的准确率可达84.86%,在OntoNote 5.0英语数据集上的准确率可达86.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and application of rhythmic gymnastics auxiliary training system based on Kinect Long-term stock price forecast based on PSO-informer model Research on numerical simulation of deep seabed blowout and oil spill range FL-Lightgbm prediction method of unbalanced small sample anti-breast cancer drugs Learning anisotropy and asymmetry geometric features for medical image segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1