Detecting Attacks on Synchrophasor Protocol Using Machine Learning Algorithms

Kolten Knesek, Patrick Wlazlo, Hao Huang, A. Sahu, A. Goulart, K. Davis
{"title":"Detecting Attacks on Synchrophasor Protocol Using Machine Learning Algorithms","authors":"Kolten Knesek, Patrick Wlazlo, Hao Huang, A. Sahu, A. Goulart, K. Davis","doi":"10.1109/SmartGridComm51999.2021.9631996","DOIUrl":null,"url":null,"abstract":"Phasor measurement units (PMUs) are used in power grids across North America to measure the amplitude, phase, and frequency of an alternating voltage or current. PMU's use the IEEE C37.118 protocol to send telemetry to phasor data collectors (PDC) and human machine interface (HMI) workstations in a control center. However, the C37.118 protocol utilizes the internet protocol stack without any authentication mechanism. This means that the protocol is vulnerable to false data injection (FDI) and false command injection (FCI). In order to study different scenarios in which C37.118 protocol's integrity and confidentiality can be compromised, we created a testbed that emulates a C37.118 communication network. In this testbed we conduct FCI and FDI attacks on real-time C37.118 data packets using a packet manipulation tool called Scapy. Using this platform, we generated C37.118 FCI and FDI datasets which are processed by multi-label machine learning classifier algorithms, such as Decision Tree (DT), k-Nearest Neighbor (kNN), and Naive Bayes (NB), to find out how effective machine learning can be at detecting such attacks. Our results show that the DT classifier had the best precision and recall rate.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9631996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phasor measurement units (PMUs) are used in power grids across North America to measure the amplitude, phase, and frequency of an alternating voltage or current. PMU's use the IEEE C37.118 protocol to send telemetry to phasor data collectors (PDC) and human machine interface (HMI) workstations in a control center. However, the C37.118 protocol utilizes the internet protocol stack without any authentication mechanism. This means that the protocol is vulnerable to false data injection (FDI) and false command injection (FCI). In order to study different scenarios in which C37.118 protocol's integrity and confidentiality can be compromised, we created a testbed that emulates a C37.118 communication network. In this testbed we conduct FCI and FDI attacks on real-time C37.118 data packets using a packet manipulation tool called Scapy. Using this platform, we generated C37.118 FCI and FDI datasets which are processed by multi-label machine learning classifier algorithms, such as Decision Tree (DT), k-Nearest Neighbor (kNN), and Naive Bayes (NB), to find out how effective machine learning can be at detecting such attacks. Our results show that the DT classifier had the best precision and recall rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习算法检测对同步量协议的攻击
相量测量单元(pmu)在北美的电网中用于测量交变电压或电流的幅度、相位和频率。PMU使用IEEE C37.118协议向控制中心的相量数据采集器(PDC)和人机界面(HMI)工作站发送遥测数据。而C37.118协议利用的是互联网协议栈,没有任何认证机制。这意味着该协议容易受到虚假数据注入(FDI)和虚假命令注入(FCI)的攻击。为了研究C37.118协议完整性和保密性可能受到损害的不同场景,我们创建了一个模拟C37.118通信网络的测试平台。在这个测试平台中,我们使用一个名为Scapy的数据包操作工具对实时C37.118数据包进行FCI和FDI攻击。使用该平台,我们生成了C37.118 FCI和FDI数据集,这些数据集由多标签机器学习分类器算法处理,如决策树(DT), k-近邻(kNN)和朴素贝叶斯(NB),以了解机器学习在检测此类攻击方面的有效性。结果表明,DT分类器具有最佳的准确率和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-complexity Risk-averse MPC for EMS Modeling framework for study of distributed and centralized smart grid system services Data-Driven Frequency Regulation Reserve Prediction Based on Deep Learning Approach Data Communication Interfaces in Smart Grid Real-time Simulations: Challenges and Solutions Modeling of Cyber Attacks Against Converter-Driven Stability of PMSG-Based Wind Farms with Intentional Subsynchronous Resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1