PPG-based heart rate estimation using Wiener filter, phase vocoder and Viterbi decoding

A. Temko
{"title":"PPG-based heart rate estimation using Wiener filter, phase vocoder and Viterbi decoding","authors":"A. Temko","doi":"10.1109/ICASSP.2017.7952309","DOIUrl":null,"url":null,"abstract":"Accurate heart rate (HR) estimation from the photoplethysmographic (PPG) signal during intensive physical exercises is tackled in this paper. Wiener filters are designed to attenuate the influence of motion artifacts. The phase vocoder is used to improve the initial Discrete Fourier transform (DFT) based frequency estimation. Additionally, Viterbi decoding is used as a novel post-processing step to find the path through time-frequency state-space plane. The system performance is assessed on a publically available dataset of 23 PPG recordings. The resulting algorithm is designed for scenarios that do not require online HR monitoring (swimming, offline fitness statistics). The resultant system with an error rate of 1.31 beats per minute outperforms all other systems reported to-date in literature and in contrast to existing alternatives requires no parameter to tune at the post-processing stage and operates at a much lower computational cost. The Matlab implementation is provided online.","PeriodicalId":118243,"journal":{"name":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2017.7952309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Accurate heart rate (HR) estimation from the photoplethysmographic (PPG) signal during intensive physical exercises is tackled in this paper. Wiener filters are designed to attenuate the influence of motion artifacts. The phase vocoder is used to improve the initial Discrete Fourier transform (DFT) based frequency estimation. Additionally, Viterbi decoding is used as a novel post-processing step to find the path through time-frequency state-space plane. The system performance is assessed on a publically available dataset of 23 PPG recordings. The resulting algorithm is designed for scenarios that do not require online HR monitoring (swimming, offline fitness statistics). The resultant system with an error rate of 1.31 beats per minute outperforms all other systems reported to-date in literature and in contrast to existing alternatives requires no parameter to tune at the post-processing stage and operates at a much lower computational cost. The Matlab implementation is provided online.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ppg的心率估计,使用维纳滤波器,相位声码器和维特比解码
本文研究了在高强度体育运动中利用光容积脉搏波(PPG)信号准确估计心率(HR)的方法。维纳滤波器被设计用来减弱运动伪影的影响。相位声码器用于改进基于初始离散傅里叶变换(DFT)的频率估计。此外,采用维特比解码作为一种新颖的后处理步骤,通过时频状态空间平面寻找路径。系统性能在23个PPG记录的公开数据集上进行评估。生成的算法是为不需要在线人力资源监控(游泳、离线健身统计)的场景而设计的。由此产生的系统的错误率为每分钟1.31次,优于迄今为止文献报道的所有其他系统,与现有的替代方案相比,在后处理阶段不需要参数调整,并且以更低的计算成本运行。在线提供了Matlab实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing observability in power distribution grids A subspace approach for shrinkage parameter selection in undersampled configuration for Regularised Tyler Estimators Artificial bandwidth extension using the constant Q transform Salience based lexical features for emotion recognition Multicore distributed dictionary learning: A microarray gene expression biclustering case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1