{"title":"Quantum sensing of nanophotonic spin density","authors":"Farid Kalhor, Li‐Ping Yang, L. Bauer, Z. Jacob","doi":"10.1117/12.2596116","DOIUrl":null,"url":null,"abstract":"Photonic spin density (PSD) in the near-field gives rise to exotic phenomena such as photonic skyrmions, optical spin-momentum locking and unidirectional topological edge waves. Experimental investigation of these phenomena requires a nanoscale probe that directly interacts with PSD. Here, we propose and demonstrate that the nitrogen-vacancy (NV) center in diamond can be used as a quantum sensor for detecting the spinning nature of photons. This room temperature magnetometer can measure the local polarization of light in ultra-subwavelength volumes through photon-spin-induced virtual transitions. The direct detection of light's spin density at the nanoscale using NV centers in diamond opens a new frontier for studying exotic phases of photons as well as future on-chip applications.","PeriodicalId":189647,"journal":{"name":"Quantum Nanophotonic Materials, Devices, and Systems 2021","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Nanophotonic Materials, Devices, and Systems 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2596116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Photonic spin density (PSD) in the near-field gives rise to exotic phenomena such as photonic skyrmions, optical spin-momentum locking and unidirectional topological edge waves. Experimental investigation of these phenomena requires a nanoscale probe that directly interacts with PSD. Here, we propose and demonstrate that the nitrogen-vacancy (NV) center in diamond can be used as a quantum sensor for detecting the spinning nature of photons. This room temperature magnetometer can measure the local polarization of light in ultra-subwavelength volumes through photon-spin-induced virtual transitions. The direct detection of light's spin density at the nanoscale using NV centers in diamond opens a new frontier for studying exotic phases of photons as well as future on-chip applications.