Lightweight End-to-end Text-to-speech Synthesis for low resource on-device applications

Biel Tura Vecino, Adam Gabrys, Daniel Matwicki, Andrzej Pomirski, Tom Iddon, Marius Cotescu, Jaime Lorenzo-Trueba
{"title":"Lightweight End-to-end Text-to-speech Synthesis for low resource on-device applications","authors":"Biel Tura Vecino, Adam Gabrys, Daniel Matwicki, Andrzej Pomirski, Tom Iddon, Marius Cotescu, Jaime Lorenzo-Trueba","doi":"10.21437/ssw.2023-35","DOIUrl":null,"url":null,"abstract":"Recent works have shown that modelling raw waveform directly from text in an end-to-end (E2E) fashion produces more natural-sounding speech than traditional neural text-to-speech (TTS) systems based on a cascade or two-stage approach. However, current E2E state-of-the-art models are computationally complex and memory-consuming, making them unsuitable for real-time offline on-device applications in low-resource scenarios. To address this issue, we propose a Lightweight E2E-TTS (LE2E) model that generates high-quality speech requiring minimal computational resources. We evaluate the proposed model on the LJSpeech dataset and show that it achieves state-of-the-art performance while being up to 90% smaller in terms of model parameters and 10 × faster in real-time-factor. Furthermore, we demonstrate that the proposed E2E training paradigm achieves better quality compared to an equivalent architecture trained in a two-stage approach. Our results suggest that LE2E is a promising approach for developing real-time, high quality, low-resource TTS applications for on-device applications.","PeriodicalId":346639,"journal":{"name":"12th ISCA Speech Synthesis Workshop (SSW2023)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th ISCA Speech Synthesis Workshop (SSW2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ssw.2023-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent works have shown that modelling raw waveform directly from text in an end-to-end (E2E) fashion produces more natural-sounding speech than traditional neural text-to-speech (TTS) systems based on a cascade or two-stage approach. However, current E2E state-of-the-art models are computationally complex and memory-consuming, making them unsuitable for real-time offline on-device applications in low-resource scenarios. To address this issue, we propose a Lightweight E2E-TTS (LE2E) model that generates high-quality speech requiring minimal computational resources. We evaluate the proposed model on the LJSpeech dataset and show that it achieves state-of-the-art performance while being up to 90% smaller in terms of model parameters and 10 × faster in real-time-factor. Furthermore, we demonstrate that the proposed E2E training paradigm achieves better quality compared to an equivalent architecture trained in a two-stage approach. Our results suggest that LE2E is a promising approach for developing real-time, high quality, low-resource TTS applications for on-device applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于低资源设备上应用程序的轻量级端到端文本到语音合成
最近的研究表明,与基于级联或两阶段方法的传统神经文本到语音(TTS)系统相比,以端到端(E2E)方式直接从文本建模原始波形可以产生更自然的语音。然而,当前的端到端最先进的模型计算复杂,内存消耗大,不适合低资源场景下的实时脱机设备应用。为了解决这个问题,我们提出了一个轻量级的E2E-TTS (LE2E)模型,该模型可以产生高质量的语音,需要最少的计算资源。我们在LJSpeech数据集上评估了所提出的模型,并表明它达到了最先进的性能,同时在模型参数方面缩小了90%,在实时因子方面提高了10倍。此外,我们证明,与用两阶段方法训练的等效体系结构相比,所提出的E2E训练范式实现了更好的质量。我们的研究结果表明,LE2E是一种很有前途的方法,可以为设备上应用开发实时、高质量、低资源的TTS应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Re-examining the quality dimensions of synthetic speech Synthesising turn-taking cues using natural conversational data Diffusion Transformer for Adaptive Text-to-Speech Adaptive Duration Modification of Speech using Masked Convolutional Networks and Open-Loop Time Warping Audiobook synthesis with long-form neural text-to-speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1