Diminishing the number of nodes in multi-layered neural networks

P. Nocera, R. Quélavoine
{"title":"Diminishing the number of nodes in multi-layered neural networks","authors":"P. Nocera, R. Quélavoine","doi":"10.1109/ICNN.1994.374981","DOIUrl":null,"url":null,"abstract":"We propose in this paper two ways for diminishing the size of a multilayered neural network trained to recognise French vowels. The first deals with the hidden layers: the study of the variation of the outputs of each node gives us information on its very discrimination power and then allows us to reduce the size of the network. The second involves the input nodes: by the examination of the connecting weights between the input nodes and the following hidden layer, we can determinate which features are actually relevant for our classification problem, and then eliminate the useless ones. Through the problem of recognising the French vowel /a/, we show that we can obtain a reduced structure that still can learn.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose in this paper two ways for diminishing the size of a multilayered neural network trained to recognise French vowels. The first deals with the hidden layers: the study of the variation of the outputs of each node gives us information on its very discrimination power and then allows us to reduce the size of the network. The second involves the input nodes: by the examination of the connecting weights between the input nodes and the following hidden layer, we can determinate which features are actually relevant for our classification problem, and then eliminate the useless ones. Through the problem of recognising the French vowel /a/, we show that we can obtain a reduced structure that still can learn.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层神经网络中节点数的减少
我们在本文中提出了两种方法来减小多层神经网络的大小,以训练识别法语元音。第一种方法处理隐藏层:研究每个节点输出的变化,为我们提供有关其识别能力的信息,然后允许我们减小网络的大小。第二个涉及到输入节点:通过检查输入节点与下一个隐藏层之间的连接权值,我们可以确定哪些特征与我们的分类问题真正相关,然后消除无用的特征。通过识别法语元音/a/的问题,我们展示了我们可以获得一个仍然可以学习的简化结构。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1