Fast algorithm of support vector machines in lung cancer diagnosis

Weiqiang Liu, Peihua Shen, Yingge Qu, De-Shen Xia
{"title":"Fast algorithm of support vector machines in lung cancer diagnosis","authors":"Weiqiang Liu, Peihua Shen, Yingge Qu, De-Shen Xia","doi":"10.1109/MIAR.2001.930284","DOIUrl":null,"url":null,"abstract":"In this paper a method of lung cancer aid diagnosis using support vector machines is proposed. Combined with the knowledge of pathology, the improvement of sequential minimal optimization (SMO) is achieved by the introduction of game theory to accelerate the training process. The experimental result shows that the speed increased greatly. And comparing with other systems, the diagnosis identification rate of the three main kinds of cancer cells is also increased.","PeriodicalId":375408,"journal":{"name":"Proceedings International Workshop on Medical Imaging and Augmented Reality","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Workshop on Medical Imaging and Augmented Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIAR.2001.930284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper a method of lung cancer aid diagnosis using support vector machines is proposed. Combined with the knowledge of pathology, the improvement of sequential minimal optimization (SMO) is achieved by the introduction of game theory to accelerate the training process. The experimental result shows that the speed increased greatly. And comparing with other systems, the diagnosis identification rate of the three main kinds of cancer cells is also increased.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持向量机在肺癌诊断中的快速算法
本文提出了一种基于支持向量机的肺癌辅助诊断方法。结合病理学知识,通过引入博弈论来加速训练过程,实现了序列最小优化(SMO)的改进。实验结果表明,速度有了较大的提高。与其他系统相比,对三种主要癌细胞的诊断识别率也有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Template-matching approach to edge detection of volume data Level set methods and image segmentation Hybrid FEM for deformation of soft tissues in surgery simulation Segmentation and analysis of leg ulcers color images Development of a method to construct three-dimensional finite element models of thoracic aortic aneurysms from MRI images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1