Optimizing backbone filtering

Yueling Zhang, Jianwen Li, Min Zhang, G. Pu, Fu Song
{"title":"Optimizing backbone filtering","authors":"Yueling Zhang, Jianwen Li, Min Zhang, G. Pu, Fu Song","doi":"10.1109/TASE.2017.8285627","DOIUrl":null,"url":null,"abstract":"Backbone is the common part of each solution in a given propositional formula, which is a key to improving the performance of SAT solving and SAT-based applications, such as model checking and program analysis. In this paper, we propose an optimized approach that combines implication-driven (IDF), conflict-driven (CDF), and unique-driven (UDF) heuristics to improve backbone computing. IDF uses the particular binary structure of the form a ↔ b ∧ c to find more backbone literals. CDF comes from the observation that for a clause ¬a ∨ b, if a is a backbone literal, then b is also a backbone literal. Besides CDF, we are also able to detect new non-backbone literals by UDF. A literal l is not a backbone literal, if there is no clause Φ ∊ Φ that is only satisfied by l. We implemented our approach in a tool named DUCIBone with the above optimizations (IDF+CDF+UDF), and conducted experiments on formulas used in previous work and SAT competitions (2015, 2016). Results demonstrate that DUCIBone solved 4% (507 formulas) more formulas than minibones (minibones-RLD, 490 formulas) does under its best configuration. Among 486 formulas solved by all tools (DUCIBone, minibones-RLD, minibonescb100), DUCIBone reduced 7% (35131 seconds) than minibones (37454 seconds). Experiments indicate that the advantage of DUCIBone is more obvious when the formulas are harder.","PeriodicalId":221968,"journal":{"name":"2017 International Symposium on Theoretical Aspects of Software Engineering (TASE)","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Theoretical Aspects of Software Engineering (TASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASE.2017.8285627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Backbone is the common part of each solution in a given propositional formula, which is a key to improving the performance of SAT solving and SAT-based applications, such as model checking and program analysis. In this paper, we propose an optimized approach that combines implication-driven (IDF), conflict-driven (CDF), and unique-driven (UDF) heuristics to improve backbone computing. IDF uses the particular binary structure of the form a ↔ b ∧ c to find more backbone literals. CDF comes from the observation that for a clause ¬a ∨ b, if a is a backbone literal, then b is also a backbone literal. Besides CDF, we are also able to detect new non-backbone literals by UDF. A literal l is not a backbone literal, if there is no clause Φ ∊ Φ that is only satisfied by l. We implemented our approach in a tool named DUCIBone with the above optimizations (IDF+CDF+UDF), and conducted experiments on formulas used in previous work and SAT competitions (2015, 2016). Results demonstrate that DUCIBone solved 4% (507 formulas) more formulas than minibones (minibones-RLD, 490 formulas) does under its best configuration. Among 486 formulas solved by all tools (DUCIBone, minibones-RLD, minibonescb100), DUCIBone reduced 7% (35131 seconds) than minibones (37454 seconds). Experiments indicate that the advantage of DUCIBone is more obvious when the formulas are harder.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化骨干过滤
主干是给定命题公式中每个解的公共部分,它是提高SAT求解和基于SAT的应用(如模型检查和程序分析)性能的关键。在本文中,我们提出了一种优化的方法,结合了隐含驱动(IDF)、冲突驱动(CDF)和唯一驱动(UDF)的启发式来改进骨干计算。IDF使用形式为a↔b∧c的特殊二进制结构来查找更多的主干字面值。CDF来自于这样的观察:对于a子句¬a∨b,如果a是主干文字,那么b也是主干文字。除了CDF,我们还可以通过UDF检测新的非骨干字面值。如果字面量l不存在仅由l满足的子句Φ Φ,那么字面量l就不是主干字面量。我们在名为DUCIBone的工具中使用上述优化(IDF+CDF+UDF)实现了我们的方法,并对先前工作和SAT竞赛(2015年,2016年)中使用的公式进行了实验。结果表明:在最佳配置下,DUCIBone比minibones (minibones- rld, 490公式)多求解4%(507个公式)。在所有工具(DUCIBone、minibones- rld、minibonescb100)求解的486个公式中,DUCIBone比minibones(37454秒)缩短了7%(35131秒)。实验表明,公式越难,DUCIBone的优势越明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formal verification of user-level real-time property patterns Time-sensitive information flow control in timed event-B Formal specification of security guidelines for program certification Formal development process of safety-critical embedded human machine interface systems SCADE 6: A formal language for embedded critical software development (invited paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1