Intelligent Multi-Path Selection Based on Parameters Prediction

Suyang Ju, Joseph B. Evans
{"title":"Intelligent Multi-Path Selection Based on Parameters Prediction","authors":"Suyang Ju, Joseph B. Evans","doi":"10.1109/ICCW.2008.106","DOIUrl":null,"url":null,"abstract":"This paper provides a method for multi-path selection based on parameters prediction. In wireless networks, links with different bandwidths induce different end-to-end delay and the packet loss rate characteristics. It means that we should be able to gain some knowledge of the type of links given the end-to-end delay and the packet loss rate. In this work, we use a neural network machine learning method to infer the types of the links. After predicting the types of the links, we can choose the path based on the prediction of the incremental throughput, for example by choosing the path with the largest potential incremental throughput.","PeriodicalId":360127,"journal":{"name":"ICC Workshops - 2008 IEEE International Conference on Communications Workshops","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC Workshops - 2008 IEEE International Conference on Communications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2008.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper provides a method for multi-path selection based on parameters prediction. In wireless networks, links with different bandwidths induce different end-to-end delay and the packet loss rate characteristics. It means that we should be able to gain some knowledge of the type of links given the end-to-end delay and the packet loss rate. In this work, we use a neural network machine learning method to infer the types of the links. After predicting the types of the links, we can choose the path based on the prediction of the incremental throughput, for example by choosing the path with the largest potential incremental throughput.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于参数预测的智能多路径选择
提出了一种基于参数预测的多路径选择方法。在无线网络中,不同带宽的链路会产生不同的端到端时延和丢包率特征。这意味着我们应该能够在给定端到端延迟和丢包率的情况下获得一些链路类型的知识。在这项工作中,我们使用神经网络机器学习方法来推断链接的类型。在预测了链路的类型之后,我们可以根据增量吞吐量的预测来选择路径,例如选择潜在增量吞吐量最大的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-Dimensional Resource Allocation for OFDMA System Improving Network Reachability and Data Rate in Tactical Wireless Networks via Collaborative Communications Scheduling Algorithms for Simultaneous Software Updates of Electronic Devices in Vehicles cdma2000 Highly Detectable Pilot On Per-Flow Fairness and Scheduling in Wireless Multihop Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1