Liyang Sun, Fanyi Duanmu, Yong Liu, Yao Wang, Y. Ye, Hang Shi, David H. Dai
{"title":"Multi-path multi-tier 360-degree video streaming in 5G networks","authors":"Liyang Sun, Fanyi Duanmu, Yong Liu, Yao Wang, Y. Ye, Hang Shi, David H. Dai","doi":"10.1145/3204949.3204978","DOIUrl":null,"url":null,"abstract":"360° video streaming is a key component of the emerging Virtual Reality (VR) and Augmented Reality (AR) applications. In 360° video streaming, a user may freely navigate through the captured 360° video scene by changing her desired Field-of-View. High-throughput and low-delay data transfers enabled by 5G wireless networks can potentially facilitate untethered 360° video streaming experience. Meanwhile, the high volatility of 5G wireless links present unprecedented challenges for smooth 360° video streaming. In this paper, novel multi-path multi-tier 360° video streaming solutions are developed to simultaneously address the dynamics in both network bandwidth and user viewing direction. We systematically investigate various design trade-offs on streaming quality and robustness. Through simulations driven by real 5G network bandwidth traces and user viewing direction traces, we demonstrate that the proposed 360° video streaming solutions can achieve a high-level of Quality-of-Experience (QoE) in the challenging 5G wireless network environment.","PeriodicalId":141196,"journal":{"name":"Proceedings of the 9th ACM Multimedia Systems Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204949.3204978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70
Abstract
360° video streaming is a key component of the emerging Virtual Reality (VR) and Augmented Reality (AR) applications. In 360° video streaming, a user may freely navigate through the captured 360° video scene by changing her desired Field-of-View. High-throughput and low-delay data transfers enabled by 5G wireless networks can potentially facilitate untethered 360° video streaming experience. Meanwhile, the high volatility of 5G wireless links present unprecedented challenges for smooth 360° video streaming. In this paper, novel multi-path multi-tier 360° video streaming solutions are developed to simultaneously address the dynamics in both network bandwidth and user viewing direction. We systematically investigate various design trade-offs on streaming quality and robustness. Through simulations driven by real 5G network bandwidth traces and user viewing direction traces, we demonstrate that the proposed 360° video streaming solutions can achieve a high-level of Quality-of-Experience (QoE) in the challenging 5G wireless network environment.