Non-Local Directional-Guided Filter for Impulse-Gaussian Mixed Noise Image Denoising

Bo Fu, Ruizi Wang, Yi Li, Chengdi Xing
{"title":"Non-Local Directional-Guided Filter for Impulse-Gaussian Mixed Noise Image Denoising","authors":"Bo Fu, Ruizi Wang, Yi Li, Chengdi Xing","doi":"10.1109/ISKE47853.2019.9170405","DOIUrl":null,"url":null,"abstract":"We introduce an effective technique to restore the images corrupted by additive Gaussian noise and impulse Salt and Pepper noise. In this Work, a three-step non-local directional-guided filter is seted up. We begin by identifying Salt and Pepper noise, estimate intensity of mixed noise and preliminarily remove and repair it by Maximum Likelihood Estimator. Afterwards, use a set of discrete total variation (TV) models to mine potential directional information and generate a set of directional-guided templates. At last, We build a non-local directional-guided filter to restore lost details. Experimental results verify that the proposed algorithm can obtain the best denoising performance compared With some typical methods. In the case of high intensity noise pollution, our algorithm has more advantages.","PeriodicalId":399084,"journal":{"name":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE47853.2019.9170405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce an effective technique to restore the images corrupted by additive Gaussian noise and impulse Salt and Pepper noise. In this Work, a three-step non-local directional-guided filter is seted up. We begin by identifying Salt and Pepper noise, estimate intensity of mixed noise and preliminarily remove and repair it by Maximum Likelihood Estimator. Afterwards, use a set of discrete total variation (TV) models to mine potential directional information and generate a set of directional-guided templates. At last, We build a non-local directional-guided filter to restore lost details. Experimental results verify that the proposed algorithm can obtain the best denoising performance compared With some typical methods. In the case of high intensity noise pollution, our algorithm has more advantages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脉冲高斯混合噪声图像去噪的非局部定向滤波
介绍了一种有效的恢复被加性高斯噪声和脉冲盐胡椒噪声破坏的图像的技术。在本工作中,建立了一个三步非局部定向滤波器。首先对盐和胡椒噪声进行识别,估计混合噪声的强度,并利用极大似然估计对其进行初步去除和修复。然后,利用一组离散总变差(TV)模型挖掘潜在的方向信息,生成一组方向导向模板。最后,我们构建了一个非局部定向滤波器来恢复丢失的细节。实验结果表明,与一些典型的去噪方法相比,该算法具有较好的去噪性能。在高强度噪声污染的情况下,我们的算法更有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental Learning for Transductive SVMs ISKE 2019 Table of Contents Consensus: The Minimum Cost Model based Robust Optimization A Learned Clause Deletion Strategy Based on Distance Ratio Effects of Real Estate Regulation Policy of Beijing Based on Discrete Dependent Variables Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1