Marc Bernard, Baptiste Jeudy, Jean-Philippe Peyrache, M. Sebban, F. Thollard
{"title":"Using the H-Divergence to Prune Probabilistic Automata","authors":"Marc Bernard, Baptiste Jeudy, Jean-Philippe Peyrache, M. Sebban, F. Thollard","doi":"10.1109/ICTAI.2011.114","DOIUrl":null,"url":null,"abstract":"A problem usually encountered in probabilistic automata learning is the difficulty to deal with large training samples and/or wide alphabets. This is partially due to the size of the resulting Probabilistic Prefix Tree (PPT) from which state merging-based learning algorithms are generally applied. In this paper, we propose a novel method to prune PPTs by making use of the H-divergence d_H, recently introduced in the field of domain adaptation. d_H is based on the classification error made by an hypothesis learned from unlabeled examples drawn according to two distributions to compare. Through a thorough comparison with state-of-the-art divergence measures, we provide experimental evidences that demonstrate the efficiency of our method based on this simple and intuitive criterion.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A problem usually encountered in probabilistic automata learning is the difficulty to deal with large training samples and/or wide alphabets. This is partially due to the size of the resulting Probabilistic Prefix Tree (PPT) from which state merging-based learning algorithms are generally applied. In this paper, we propose a novel method to prune PPTs by making use of the H-divergence d_H, recently introduced in the field of domain adaptation. d_H is based on the classification error made by an hypothesis learned from unlabeled examples drawn according to two distributions to compare. Through a thorough comparison with state-of-the-art divergence measures, we provide experimental evidences that demonstrate the efficiency of our method based on this simple and intuitive criterion.