Towards Clinical Hyperspectral Imaging (HSI) Standards: Initial Design for a Microneurosurgical HSI Database

Sami Puustinen, J. Hyttinen, Gemal Hisuin, Hana Vrzakova, Antti Huotarinen, P. Fält, M. Hauta-Kasari, A. Immonen, T. Koivisto, J. Jääskeläinen, A. Elomaa
{"title":"Towards Clinical Hyperspectral Imaging (HSI) Standards: Initial Design for a Microneurosurgical HSI Database","authors":"Sami Puustinen, J. Hyttinen, Gemal Hisuin, Hana Vrzakova, Antti Huotarinen, P. Fält, M. Hauta-Kasari, A. Immonen, T. Koivisto, J. Jääskeläinen, A. Elomaa","doi":"10.1109/CBMS55023.2022.00077","DOIUrl":null,"url":null,"abstract":"Hyperspectral imaging (HSI) can enhance the recognition of normal and pathological tissues exposed during microscopic or endoscopic surgeries. However, robust HSI classification models would require meticulous documentation of the tissue-specific optical properties to account for individual variation and intraoperative factors. Publicly available HSI databases are yet scarce or lack relevant metadata, anatomical accuracy, and patients' characteristics which limits the clinical utility of the data. The essential problem is that clinical standards for HSI acquisition and archival do not exist. We collected a total of 52 microsurgical HSI images from 10 patients using our customized HSI system for the operation microscopes. We annotated the relevant microanatomical structures and labeled the tissue areas intended for HSI analyses. Using the collected HSI data, we developed the initial design of the microneurosurgical HSI database. The HSI database allows to display and query anatomical annotations, localizing magnetic resonance imaging (MRI) scans, operation videos, tissue labels, and HSI spectra per individual patient. Here we present the fundamental structures and functions of the HSI database in development. Our clinical HSI database will provide grounds for further development of HSI algorithms and machine-learning applications in microscopic and endoscopic surgery. Future collaborative research will establish clinical HSI standards with approved supporting technologies.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Hyperspectral imaging (HSI) can enhance the recognition of normal and pathological tissues exposed during microscopic or endoscopic surgeries. However, robust HSI classification models would require meticulous documentation of the tissue-specific optical properties to account for individual variation and intraoperative factors. Publicly available HSI databases are yet scarce or lack relevant metadata, anatomical accuracy, and patients' characteristics which limits the clinical utility of the data. The essential problem is that clinical standards for HSI acquisition and archival do not exist. We collected a total of 52 microsurgical HSI images from 10 patients using our customized HSI system for the operation microscopes. We annotated the relevant microanatomical structures and labeled the tissue areas intended for HSI analyses. Using the collected HSI data, we developed the initial design of the microneurosurgical HSI database. The HSI database allows to display and query anatomical annotations, localizing magnetic resonance imaging (MRI) scans, operation videos, tissue labels, and HSI spectra per individual patient. Here we present the fundamental structures and functions of the HSI database in development. Our clinical HSI database will provide grounds for further development of HSI algorithms and machine-learning applications in microscopic and endoscopic surgery. Future collaborative research will establish clinical HSI standards with approved supporting technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向临床高光谱成像(HSI)标准:微神经外科HSI数据库的初步设计
高光谱成像(HSI)可以增强对显微镜或内镜手术中暴露的正常和病理组织的识别。然而,稳健的HSI分类模型需要详细记录组织特异性光学特性,以解释个体差异和术中因素。公开可用的HSI数据库仍然稀缺或缺乏相关的元数据、解剖准确性和患者特征,这限制了数据的临床应用。最根本的问题是临床标准的HSI获取和档案不存在。我们使用我们定制的手术显微镜HSI系统,共收集了10例患者的52张显微外科HSI图像。我们注释了相关的显微解剖结构,并标记了用于HSI分析的组织区域。利用收集到的HSI数据,我们开发了微神经外科HSI数据库的初步设计。HSI数据库允许显示和查询解剖注释,定位磁共振成像(MRI)扫描,操作视频,组织标签和每个患者的HSI光谱。本文介绍了HSI数据库在开发中的基本结构和功能。我们的临床HSI数据库将为HSI算法的进一步发展和机器学习在显微和内窥镜手术中的应用提供基础。未来的合作研究将建立临床HSI标准和批准的支持技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasonic Carotid Blood Flow Velocimetry Based on Deep Complex Neural Network Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT Exploiting AI to make insulin pens smart: injection site recognition and lipodystrophy detection Subgroup Discovery Analysis of Treatment Patterns in Lung Cancer Patients Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1