Scale-based clustering using the radial basis function network

S. Chakravarthy, Joydeep Ghosh
{"title":"Scale-based clustering using the radial basis function network","authors":"S. Chakravarthy, Joydeep Ghosh","doi":"10.1109/ICNN.1994.374299","DOIUrl":null,"url":null,"abstract":"Adaptive learning dynamics of the radial basis function network (RBFN) are compared with a scale-based clustering technique and a relationship between the two is pointed out. Using this link, it is shown how scale-based clustering can be done using the RBFN, with the radial basis function (RBF) width as the scale parameter. The technique suggests the \"right\" scale at which the given data set must be clustered and obviates the need for knowing the number of clusters beforehand. We show how this method solves the problem of determining the number of RBF units and the widths required to get a good network solution.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 114

Abstract

Adaptive learning dynamics of the radial basis function network (RBFN) are compared with a scale-based clustering technique and a relationship between the two is pointed out. Using this link, it is shown how scale-based clustering can be done using the RBFN, with the radial basis function (RBF) width as the scale parameter. The technique suggests the "right" scale at which the given data set must be clustered and obviates the need for knowing the number of clusters beforehand. We show how this method solves the problem of determining the number of RBF units and the widths required to get a good network solution.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于尺度的径向基函数网络聚类
将径向基函数网络(RBFN)的自适应学习动态与基于尺度的聚类技术进行了比较,并指出了两者之间的关系。通过这个链接,展示了如何使用径向基函数(RBF)宽度作为尺度参数的RBFN来完成基于尺度的聚类。该技术提出了给定数据集必须聚类的“正确”规模,并避免了事先知道聚类数量的需要。我们展示了这种方法如何解决确定RBF单元的数量和获得良好网络解所需的宽度的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1