Topical unit classification using deep neural nets and probabilistic sampling

György Kovács, Tamás Grósz, T. Váradi
{"title":"Topical unit classification using deep neural nets and probabilistic sampling","authors":"György Kovács, Tamás Grósz, T. Váradi","doi":"10.1109/COGINFOCOM.2016.7804549","DOIUrl":null,"url":null,"abstract":"Understanding topical units is important for improved human-computer interaction (HCI) as well as for a better understanding of human-human interaction. Here, we take the first steps towards topical unit recognition by creating a topical unit classifier based on the HuComTech multimodal database. We create this classifier by means of Deep Rectifier Neural Nets (DRN) and the Unweighted Average Recall (UAR) metric, applying the technique of probabilistic sampling. We demonstrate in several experiments that our proposed method attains a convincingly better performance than that using a support vector machine or a deep neural net by itself. We also experiment with the number of topical unit labels, and examine whether distinguishing between different types of topic changes based on the level of motivatedness is feasible in this framework.","PeriodicalId":440408,"journal":{"name":"2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGINFOCOM.2016.7804549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Understanding topical units is important for improved human-computer interaction (HCI) as well as for a better understanding of human-human interaction. Here, we take the first steps towards topical unit recognition by creating a topical unit classifier based on the HuComTech multimodal database. We create this classifier by means of Deep Rectifier Neural Nets (DRN) and the Unweighted Average Recall (UAR) metric, applying the technique of probabilistic sampling. We demonstrate in several experiments that our proposed method attains a convincingly better performance than that using a support vector machine or a deep neural net by itself. We also experiment with the number of topical unit labels, and examine whether distinguishing between different types of topic changes based on the level of motivatedness is feasible in this framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络和概率抽样的局部单元分类
理解主题单元对于改进人机交互(HCI)以及更好地理解人机交互非常重要。在这里,我们通过创建基于HuComTech多模态数据库的主题单元分类器,迈出了主题单元识别的第一步。该分类器采用深度整流神经网络(DRN)和非加权平均召回率(UAR)度量,采用概率抽样技术。我们在几个实验中证明了我们提出的方法比使用支持向量机或深度神经网络本身获得了令人信服的更好的性能。我们还对主题单元标签的数量进行了实验,并检验了在这个框架中,基于动机水平区分不同类型的主题变化是否可行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
When the "truth" can (softly) hurt. Effects of political orientation on different forms of parody How cognitive infocommunications play a critical role in shaping the future of forensic sciences defining forensic cognitive infocommunications Compassion, empathy and sympathy expression features in affective robotics Can we detect speakers' empathy?: A real-life case study Analyzing the expression of annoyance during phone calls to complaint services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1