A Study on Plate Bending Analysis Using Boundary Element Method

Jae-hyeon Son, Yooil Kim
{"title":"A Study on Plate Bending Analysis Using Boundary Element Method","authors":"Jae-hyeon Son, Yooil Kim","doi":"10.26748/ksoe.2022.015","DOIUrl":null,"url":null,"abstract":"This study presents a method for level ice-structure interaction analysis to estimate the fatigue damage of arctic structures by applying plate theory to the behavior of level ice. The boundary element method (BEM), which incurs a lower computational cost than the finite element method (FEM), was introduced to solve the plate bending problem. The BEM formulation was performed by applying the BEM to plate theory. Finally, to check the validity of the proposed method, the BEM results and FEM results obtained using the ABAQUS commercial software were compared. The response results of the BEM analysis agreed well with those of the FEM analysis. Based on the results of the analysis, the BEM approach is considered to be very powerful in level ice-structure interaction analysis for estimating level ice-induced fatigue damage. Further work is being conducted to perform level ice fracture analysis based on the stress field calculated using the boundary element method.","PeriodicalId":315103,"journal":{"name":"Journal of Ocean Engineering and Technology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26748/ksoe.2022.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a method for level ice-structure interaction analysis to estimate the fatigue damage of arctic structures by applying plate theory to the behavior of level ice. The boundary element method (BEM), which incurs a lower computational cost than the finite element method (FEM), was introduced to solve the plate bending problem. The BEM formulation was performed by applying the BEM to plate theory. Finally, to check the validity of the proposed method, the BEM results and FEM results obtained using the ABAQUS commercial software were compared. The response results of the BEM analysis agreed well with those of the FEM analysis. Based on the results of the analysis, the BEM approach is considered to be very powerful in level ice-structure interaction analysis for estimating level ice-induced fatigue damage. Further work is being conducted to perform level ice fracture analysis based on the stress field calculated using the boundary element method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边界元法在板弯曲分析中的应用研究
本文提出了一种水平冰-结构相互作用分析方法,将板理论应用于水平冰的行为来估计北极结构的疲劳损伤。采用边界元法求解板的弯曲问题,计算成本比有限元法低。将边界元法应用于平板理论,推导出边界元法的计算公式。最后,将基于ABAQUS商业软件的边界元计算结果与有限元计算结果进行对比,验证所提方法的有效性。边界元分析结果与有限元分析结果吻合较好。分析结果表明,边界元法在水平冰-结构相互作用分析中具有很好的应用价值,可用于估计水平冰致疲劳损伤。基于边界元法计算的应力场,进一步开展水平冰断裂分析工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Storm Waves Caused by Typhoon Bolaven (1215) on Korean Coast: A Comparative Analysis with Deepwater Design Waves Development of Strength Evaluation Methodology for Independent IMO TYPE C Tank with LH2 Carriers Optimization Analysis of the Shape and Position of a Submerged Breakwater for Improving Floating Body Stability Investigation of Seakeeping Performance of Trawler by the Influence of the Principal Particulars of Ships in the Bering Sea Numerical Investigation of Motion Response of the Tanker at Varying Vertical Center of Gravities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1