GAN vs. LSTM: Network State Prediction

Gyurin Byun, S. M. Raza, Hui-Lin Yang, Moonseong Kim, Hyunseung Choo
{"title":"GAN vs. LSTM: Network State Prediction","authors":"Gyurin Byun, S. M. Raza, Hui-Lin Yang, Moonseong Kim, Hyunseung Choo","doi":"10.1109/IMCOM56909.2023.10035608","DOIUrl":null,"url":null,"abstract":"Network Traffic prediction is the prerequisite for proactive traffic management, where a longer duration and high accuracy of prediction ensures a more effective solution. This paper exploits Generative Adversarial Network (GAN) architecture to propose a model that utilizes spatiotemporal features in network traffic data for extended prediction of future traffic. The generator in GAN consists of a Convolutional Long Short-Term Memory (ConvLSTM) model for predicting network traffic, while the discriminator uses Convolutional Neural Network (CNN) model that provides feedback to the generator for training. The experiments based on network traces show that the proposed model reduces the error by 12% compared to the baseline model while predicting next 48 mins of network traffic.","PeriodicalId":230213,"journal":{"name":"2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM56909.2023.10035608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Network Traffic prediction is the prerequisite for proactive traffic management, where a longer duration and high accuracy of prediction ensures a more effective solution. This paper exploits Generative Adversarial Network (GAN) architecture to propose a model that utilizes spatiotemporal features in network traffic data for extended prediction of future traffic. The generator in GAN consists of a Convolutional Long Short-Term Memory (ConvLSTM) model for predicting network traffic, while the discriminator uses Convolutional Neural Network (CNN) model that provides feedback to the generator for training. The experiments based on network traces show that the proposed model reduces the error by 12% compared to the baseline model while predicting next 48 mins of network traffic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GAN与LSTM:网络状态预测
网络流量预测是主动流量管理的前提,预测的持续时间越长,预测的准确性越高,解决方案越有效。本文利用生成对抗网络(GAN)架构提出了一种利用网络流量数据的时空特征对未来流量进行扩展预测的模型。GAN中的生成器使用卷积长短期记忆(ConvLSTM)模型预测网络流量,鉴别器使用卷积神经网络(CNN)模型向生成器提供反馈进行训练。基于网络轨迹的实验表明,在预测未来48分钟的网络流量时,该模型比基线模型的误差降低了12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lightweight energy-efficient offloading framework for mobile edge/cloud computing Dual ResNet-based Environmental Sound Classification using GAN Finite Element Method for System-in-Package (SiP) Technology: Thermal Analysis Using Chip Cooling Laminate Chip (CCLC) An Improved Reverse Distillation Model for Unsupervised Anomaly Detection Pictorial Map Generation based on Color Extraction and Sentiment Analysis using SNS Photos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1