Comprehensible reasoning and automated reporting of medical examinations based on deep learning analysis

S. Hicks, Konstantin Pogorelov, T. Lange, M. Lux, Mattis Jeppsson, K. Randel, S. Eskeland, P. Halvorsen, M. Riegler
{"title":"Comprehensible reasoning and automated reporting of medical examinations based on deep learning analysis","authors":"S. Hicks, Konstantin Pogorelov, T. Lange, M. Lux, Mattis Jeppsson, K. Randel, S. Eskeland, P. Halvorsen, M. Riegler","doi":"10.1145/3204949.3208113","DOIUrl":null,"url":null,"abstract":"In the future, medical doctors will to an increasing degree be assisted by deep learning neural networks for disease detection during examinations of patients. In order to make qualified decisions, the black box of deep learning must be opened to increase the understanding of the reasoning behind the decision of the machine learning system. Furthermore, preparing reports after the examinations is a significant part of a doctors work-day, but if we already have a system dissecting the neural network for understanding, the same tool can be used for automatic report generation. In this demo, we describe a system that analyses medical videos from the gastrointestinal tract. Our system dissects the Tensorflow-based neural network to provide insights into the analysis and uses the resulting classification and rationale behind the classification to automatically generate an examination report for the patient's medical journal.","PeriodicalId":141196,"journal":{"name":"Proceedings of the 9th ACM Multimedia Systems Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204949.3208113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In the future, medical doctors will to an increasing degree be assisted by deep learning neural networks for disease detection during examinations of patients. In order to make qualified decisions, the black box of deep learning must be opened to increase the understanding of the reasoning behind the decision of the machine learning system. Furthermore, preparing reports after the examinations is a significant part of a doctors work-day, but if we already have a system dissecting the neural network for understanding, the same tool can be used for automatic report generation. In this demo, we describe a system that analyses medical videos from the gastrointestinal tract. Our system dissects the Tensorflow-based neural network to provide insights into the analysis and uses the resulting classification and rationale behind the classification to automatically generate an examination report for the patient's medical journal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习分析的可理解推理和自动体检报告
在未来,医生将越来越多地借助深度学习神经网络在检查患者时进行疾病检测。为了做出合格的决策,必须打开深度学习的黑匣子,以增加对机器学习系统决策背后推理的理解。此外,在检查后准备报告是医生工作的重要组成部分,但如果我们已经有了一个系统来剖析神经网络以进行理解,那么同样的工具可以用于自动生成报告。在这个演示中,我们描述了一个分析胃肠道医学视频的系统。我们的系统剖析了基于tensorflow的神经网络,以提供对分析的见解,并使用分类结果和分类背后的原理自动为患者的医学杂志生成检查报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual object tracking in a parking garage using compressed domain analysis ISIFT VideoNOC OpenCV.js: computer vision processing for the open web platform Subdiv17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1