Residual's influence index (RINFIN), bad leverage and unmasking in high dimensional L2‐regression

Y. Yatracos
{"title":"Residual's influence index (RINFIN), bad leverage and unmasking in high dimensional L2‐regression","authors":"Y. Yatracos","doi":"10.1002/sam.11550","DOIUrl":null,"url":null,"abstract":"In linear regression of Y on X(∈ Rp) with parameters β(∈ Rp+1), statistical inference is unreliable when observations are obtained from gross‐error model, Fϵ,G = (1 − ϵ)F + ϵG, instead of the assumed probability F;G is gross‐error probability, 0 < ϵ < 1. Residual's influence index (RINFIN) at (x, y) is introduced, with components measuring also the local influence of x in the residual and large value flagging a bad leverage case (from G), thus causing unmasking. Large sample properties of RINFIN are presented to confirm significance of the findings, but often the large difference in the RINFIN scores of the data is indicative. RINFIN is successful with microarray data, simulated, high dimensional data and classic regression data sets. RINFIN's performance improves as p increases and can be used in multiple response linear regression.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In linear regression of Y on X(∈ Rp) with parameters β(∈ Rp+1), statistical inference is unreliable when observations are obtained from gross‐error model, Fϵ,G = (1 − ϵ)F + ϵG, instead of the assumed probability F;G is gross‐error probability, 0 < ϵ < 1. Residual's influence index (RINFIN) at (x, y) is introduced, with components measuring also the local influence of x in the residual and large value flagging a bad leverage case (from G), thus causing unmasking. Large sample properties of RINFIN are presented to confirm significance of the findings, but often the large difference in the RINFIN scores of the data is indicative. RINFIN is successful with microarray data, simulated, high dimensional data and classic regression data sets. RINFIN's performance improves as p increases and can be used in multiple response linear regression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
残差影响指数(RINFIN),高维L2回归中的不良杠杆和揭露
在参数为β(∈Rp+1)的Y在X(∈Rp)上的线性回归中,当从粗误差模型中获得观测值时,统计推断是不可靠的,f御,G =(1−御)F + ϵG,而不是假设概率F;G是粗误差概率,0 <御< 1。引入残差在(x, y)处的影响指数(RINFIN),其分量也测量残差中x的局部影响,大值表示不良杠杆情况(来自G),从而导致揭罩。提出RINFIN的大样本特性是为了证实研究结果的意义,但通常数据的RINFIN分数的大差异是指示性的。RINFIN在微阵列数据,模拟,高维数据和经典回归数据集方面取得了成功。RINFIN的性能随p的增加而提高,可用于多响应线性回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural interval‐censored survival regression with feature selection Bayesian batch optimization for molybdenum versus tungsten inertial confinement fusion double shell target design Gaussian process selections in semiparametric multi‐kernel machine regression for multi‐pathway analysis An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics Confidence bounds for threshold similarity graph in random variable network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1