Study on the shortest path algorithm based on fluid neural network of in-vehicle traffic flow guidance system

W. Huimin, Y. Zhaosheng
{"title":"Study on the shortest path algorithm based on fluid neural network of in-vehicle traffic flow guidance system","authors":"W. Huimin, Y. Zhaosheng","doi":"10.1109/IVEC.1999.830636","DOIUrl":null,"url":null,"abstract":"The shortest path algorithm is critical for dynamic traffic assignment (DTA) and for the realization of route guidance in ITS. In order to implement the guidance function quickly and accurately, this paper introduces the fluid neural network (FNN) and develops a new parallel method based on FNN and genetic algorithm (GA) for route guidance. A sub-searching process and parameter optimization are employed to improve the performance of FNN. It is indicated by simulation that this method can be used to find the shortest route quickly from the original node to destination node in traffic networks.","PeriodicalId":191336,"journal":{"name":"Proceedings of the IEEE International Vehicle Electronics Conference (IVEC'99) (Cat. No.99EX257)","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE International Vehicle Electronics Conference (IVEC'99) (Cat. No.99EX257)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVEC.1999.830636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The shortest path algorithm is critical for dynamic traffic assignment (DTA) and for the realization of route guidance in ITS. In order to implement the guidance function quickly and accurately, this paper introduces the fluid neural network (FNN) and develops a new parallel method based on FNN and genetic algorithm (GA) for route guidance. A sub-searching process and parameter optimization are employed to improve the performance of FNN. It is indicated by simulation that this method can be used to find the shortest route quickly from the original node to destination node in traffic networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于流体神经网络的车载交通流引导系统最短路径算法研究
最短路径算法是实现智能交通系统动态交通分配(DTA)和路径引导的关键。为了快速准确地实现导航功能,本文引入了流体神经网络(FNN),提出了一种基于FNN和遗传算法的并行路径导航方法。采用子搜索过程和参数优化来提高FNN的性能。仿真结果表明,该方法可以快速找到交通网络中从原始节点到目的节点的最短路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive neural network vector quantization algorithm and its implementation based on TMS320C30 in color image coding Self-tuning control of vehicle suspension Development and applications of JUT-ADSL driving simulator Study of the electronic control strategy for the power train of hybrid electric vehicle Research on integrated control strategy of CVT for passenger cars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1