K. N. Babi, Mohammed Rokibul Alam Kotwal, Foyzul Hassan, M. N. Huda
{"title":"Local feature based gender independent bangla ASR","authors":"K. N. Babi, Mohammed Rokibul Alam Kotwal, Foyzul Hassan, M. N. Huda","doi":"10.1109/ICCITECHN.2012.6509790","DOIUrl":null,"url":null,"abstract":"This paper presents automatic speech recognition (ASR) for Bangla (widely used as Bengali) by suppressing the speaker gender types based on local features extracted from an input speech. Speaker-specific characteristics play an important role on the performance of Bangla automatic speech recognition (ASR). Gender factor shows adverse effect in the classifier while recognizing a speech by an opposite gender, such as, training a classifier by male but testing is done by female or vice-versa. To obtain a robust ASR system in practice it is necessary to invent a system that incorporates gender independent effect for particular gender. In this paper, we have proposed a Gender-Independent technique for ASR that focused on a gender factor. The proposed method trains the classifier with the both types of gender, male and female, and evaluates the classifier for the male and female. For the experiments, we have designed a medium size Bangla (widely known as Bengali) speech corpus for both the male and female. The proposed system has showed a significant improvement of word correct rates, word accuracies and sentence correct rates in comparison with the method that suffers from gender effects using. Moreover, it provides the highest level recognition performance by taking a fewer mixture component in hidden Markov model (HMMs).","PeriodicalId":127060,"journal":{"name":"2012 15th International Conference on Computer and Information Technology (ICCIT)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 15th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2012.6509790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents automatic speech recognition (ASR) for Bangla (widely used as Bengali) by suppressing the speaker gender types based on local features extracted from an input speech. Speaker-specific characteristics play an important role on the performance of Bangla automatic speech recognition (ASR). Gender factor shows adverse effect in the classifier while recognizing a speech by an opposite gender, such as, training a classifier by male but testing is done by female or vice-versa. To obtain a robust ASR system in practice it is necessary to invent a system that incorporates gender independent effect for particular gender. In this paper, we have proposed a Gender-Independent technique for ASR that focused on a gender factor. The proposed method trains the classifier with the both types of gender, male and female, and evaluates the classifier for the male and female. For the experiments, we have designed a medium size Bangla (widely known as Bengali) speech corpus for both the male and female. The proposed system has showed a significant improvement of word correct rates, word accuracies and sentence correct rates in comparison with the method that suffers from gender effects using. Moreover, it provides the highest level recognition performance by taking a fewer mixture component in hidden Markov model (HMMs).