Topology Design and Performance Analysis of a MMC Based Solid-State Transformer

Baorong Zhou, Shiyang Li, Jianing Li, Lei Chen, Xuefeng Qiao, Hongkun Chen
{"title":"Topology Design and Performance Analysis of a MMC Based Solid-State Transformer","authors":"Baorong Zhou, Shiyang Li, Jianing Li, Lei Chen, Xuefeng Qiao, Hongkun Chen","doi":"10.1109/ACFPE56003.2022.9952179","DOIUrl":null,"url":null,"abstract":"As a very promising power electronic equipment, the solid-state transformer (SST) provides favorable interfaces for distributed generation, energy storage, and various types of power loads. The research on the SST's structural topology is of significance. In this paper, a three-stage SST based on the modular multilevel converter (MMC) technology is established, and the related topology design and mathematical modeling method are presented with an elaboration of the control strategy. Finally, a simulation model of the designed SST is constructed in Simulink, and the SST connecting with 10 kV and 380 V power grids is done. From the simulation results, it is concluded that the SST can satisfactorily complete the predictive functions, thus verifying the feasibility of the proposed SST topology.","PeriodicalId":198086,"journal":{"name":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACFPE56003.2022.9952179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a very promising power electronic equipment, the solid-state transformer (SST) provides favorable interfaces for distributed generation, energy storage, and various types of power loads. The research on the SST's structural topology is of significance. In this paper, a three-stage SST based on the modular multilevel converter (MMC) technology is established, and the related topology design and mathematical modeling method are presented with an elaboration of the control strategy. Finally, a simulation model of the designed SST is constructed in Simulink, and the SST connecting with 10 kV and 380 V power grids is done. From the simulation results, it is concluded that the SST can satisfactorily complete the predictive functions, thus verifying the feasibility of the proposed SST topology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MMC的固态变压器拓扑设计与性能分析
固态变压器(SST)作为一种非常有发展前景的电力电子设备,为分布式发电、储能和各类电力负荷提供了良好的接口。研究海温的结构拓扑结构具有重要意义。本文建立了一种基于模块化多电平变换器(MMC)技术的三级SST,给出了相应的拓扑设计和数学建模方法,并对控制策略进行了阐述。最后,在Simulink中对设计的SST进行了仿真,并分别与10kv和380v电网进行了连接。从仿真结果来看,SST可以很好地完成预测函数,从而验证了所提出的SST拓扑的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Projection Method of Energy Storage System in Power Spot Market for Renewable Accommodation A Copeland-Method-based Weakness Identification for the Components in Transmission Systems Under Natural Disasters Optimization Clearing Model of Regional Integrated Electricity Market Transaction in the Dual Track System of Planning and Market Mechanism analysis of power fluctuation of wind power AC transmission channel caused by DC commutation failure Research on energy regulation strategy of six-phase motor for multi-mode combined propulsion system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1