On the Use of the Power Transformation Models to Improve the Temperature Time Series

S. A. Othman, Haithem Taha Mohammed Ali
{"title":"On the Use of the Power Transformation Models to Improve the Temperature Time Series","authors":"S. A. Othman, Haithem Taha Mohammed Ali","doi":"10.19139/soic-2310-5070-1333","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to select an appropriate ARIMA model for the time series after transforming the original responses. Box-Cox and Yeo-Johnson power transformation models were used on the response variables of two time series datasets of average temperatures and then diagnosed and built the appropriate ARIMA models for each time-series. The authors treat the results of the model fitting as a package in an attempt to decide and choose the best model by diagnosing the effect of the data transformation on the response normality, significant of estimated model parameters, forecastability and the behavior of the residuals. The authors conclude that the Yeo-Johnson model was more flexible in smoothing the data and contributedto accessing a simple model with good forecastability.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to select an appropriate ARIMA model for the time series after transforming the original responses. Box-Cox and Yeo-Johnson power transformation models were used on the response variables of two time series datasets of average temperatures and then diagnosed and built the appropriate ARIMA models for each time-series. The authors treat the results of the model fitting as a package in an attempt to decide and choose the best model by diagnosing the effect of the data transformation on the response normality, significant of estimated model parameters, forecastability and the behavior of the residuals. The authors conclude that the Yeo-Johnson model was more flexible in smoothing the data and contributedto accessing a simple model with good forecastability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用功率变换模型改进温度时间序列
本文的目的是在对原始响应进行变换后,为时间序列选择合适的ARIMA模型。采用Box-Cox和Yeo-Johnson功率变换模型对两个平均温度时间序列数据集的响应变量进行诊断,并针对每个时间序列建立相应的ARIMA模型。作者将模型拟合的结果视为一个整体,试图通过诊断数据转换对响应正态性、估计模型参数的显著性、可预测性和残差行为的影响来决定和选择最佳模型。作者得出结论,Yeo-Johnson模型在平滑数据方面更加灵活,有助于获得具有良好可预测性的简单模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-depth Analysis of von Mises Distribution Models: Understanding Theory, Applications, and Future Directions Bayesian and Non-Bayesian Estimation for The Parameter of Inverted Topp-Leone Distribution Based on Progressive Type I Censoring Comparative Evaluation of Imbalanced Data Management Techniques for Solving Classification Problems on Imbalanced Datasets An Algorithm for Solving Quadratic Programming Problems with an M-matrix An Effective Randomized Algorithm for Hyperspectral Image Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1