Linear prediction-based dereverberation with very deep convolutional neural networks for reverberant speech recognition

Sunchan Park, Yongwon Jeong, M. Kim, H. S. Kim
{"title":"Linear prediction-based dereverberation with very deep convolutional neural networks for reverberant speech recognition","authors":"Sunchan Park, Yongwon Jeong, M. Kim, H. S. Kim","doi":"10.23919/ELINFOCOM.2018.8330593","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) have been shown to improve classification tasks such as automatic speech recognition (ASR). Furthermore, the CNN with very deep architecture lowered the word error rate (WER) in reverberant and noisy environments. However, DNN-based ASR systems still perform poorly in unseen reverberant conditions. In this paper, we use the weighted prediction error (WPE)-based preprocessing for dereverberation. In our experiments on the ASR task of the REVERB Challenge 2014, the WPE-based processing with eight channels reduced the WER by 20% for the real-condition data using CNN acoustic models with 10 layers.","PeriodicalId":413646,"journal":{"name":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELINFOCOM.2018.8330593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Convolutional neural networks (CNNs) have been shown to improve classification tasks such as automatic speech recognition (ASR). Furthermore, the CNN with very deep architecture lowered the word error rate (WER) in reverberant and noisy environments. However, DNN-based ASR systems still perform poorly in unseen reverberant conditions. In this paper, we use the weighted prediction error (WPE)-based preprocessing for dereverberation. In our experiments on the ASR task of the REVERB Challenge 2014, the WPE-based processing with eight channels reduced the WER by 20% for the real-condition data using CNN acoustic models with 10 layers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于线性预测的深度卷积神经网络去混响语音识别
卷积神经网络(cnn)已被证明可以改善自动语音识别(ASR)等分类任务。此外,具有非常深结构的CNN降低了混响和噪声环境下的单词错误率(WER)。然而,基于dnn的ASR系统在看不见的混响条件下仍然表现不佳。在本文中,我们使用加权预测误差(WPE)为基础的预处理去噪。在我们对REVERB Challenge 2014的ASR任务的实验中,使用10层CNN声学模型的真实条件数据,基于8通道的wpe处理将WER降低了20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensing voltage compensation circuit for low-power dram bit-line sense amplifier Coordinate-RNN for error correction on numerical weather prediction Pulsed PMOS sense amplifier for high speed single-ended SRAM An estimation of road surface conditions using participatory sensing Cycle-accurate full system simulation for CPU+GPU+HBM computing platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1