Introducing distributed learning approaches in wind power forecasting

P. Pinson
{"title":"Introducing distributed learning approaches in wind power forecasting","authors":"P. Pinson","doi":"10.1109/PMAPS.2016.7764224","DOIUrl":null,"url":null,"abstract":"Renewable energy forecasting is now of core interest to both academics, who continuously propose new forecast methodologies, and forecast users for optimal operations and participation in electricity markets. In view of the increasing amount of data being collected at power generation sites, thanks to substantial deployment of generating capacities and increased temporal resolution, it may now be possible to build large models accounting for all space-time dependencies. This will eventually allow to significantly improve the quality of short-term renewable power forecasts. However, in practice, it is often the case that operators of these generation sites do not want to share their data due to competitive interests. Consequently, approaches to privacy-preserving distributed learning are proposed and investigated here. These permit to take advantage of all potential data collected by others, without having to ever share any data, by decomposing the original large learning problem into a number of small learning problems that can be solved in a decentralized manner. As an example, emphasis is placed on Lasso-type estimation of autoregressive models with offsite observations. Different applications on medium to large datasets in Australia (22 wind farms) and France (85 wind farms) are used to illustrate the interest and performance of our proposal.","PeriodicalId":265474,"journal":{"name":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS.2016.7764224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Renewable energy forecasting is now of core interest to both academics, who continuously propose new forecast methodologies, and forecast users for optimal operations and participation in electricity markets. In view of the increasing amount of data being collected at power generation sites, thanks to substantial deployment of generating capacities and increased temporal resolution, it may now be possible to build large models accounting for all space-time dependencies. This will eventually allow to significantly improve the quality of short-term renewable power forecasts. However, in practice, it is often the case that operators of these generation sites do not want to share their data due to competitive interests. Consequently, approaches to privacy-preserving distributed learning are proposed and investigated here. These permit to take advantage of all potential data collected by others, without having to ever share any data, by decomposing the original large learning problem into a number of small learning problems that can be solved in a decentralized manner. As an example, emphasis is placed on Lasso-type estimation of autoregressive models with offsite observations. Different applications on medium to large datasets in Australia (22 wind farms) and France (85 wind farms) are used to illustrate the interest and performance of our proposal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在风电预测中引入分布式学习方法
可再生能源预测现在是两位学者的核心兴趣,他们不断提出新的预测方法,并预测用户的最佳运营和参与电力市场。由于发电能力的大量部署和时间分辨率的提高,在发电场址收集的数据越来越多,现在有可能建立考虑到所有时空依赖性的大型模型。这最终将显著提高短期可再生能源预测的质量。然而,在实践中,由于竞争利益的原因,这些发电站点的运营商往往不愿意分享他们的数据。因此,本文提出并研究了保护隐私的分布式学习方法。通过将原始的大型学习问题分解为许多可以以分散的方式解决的小型学习问题,这些方法允许利用其他人收集的所有潜在数据,而不必共享任何数据。作为一个例子,重点放在lasso型估计的自回归模型与非现场观测。在澳大利亚(22个风电场)和法国(85个风电场)的大中型数据集上的不同应用被用来说明我们的建议的兴趣和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A performance and maintenance evaluation framework for wind turbines Transmission network expansion planning with stochastic multivariate load and wind modeling The anomalous data identification study of reactive power optimization system based on big data A resilient power system operation strategy considering presumed attacks The use of Markov chain method to determine spare transformer number with 3-criteria parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1