Multi-dimensional transfer function design based on flexible dimension projection embedded in parallel coordinates

Hanqi Guo, He Xiao, Xiaoru Yuan
{"title":"Multi-dimensional transfer function design based on flexible dimension projection embedded in parallel coordinates","authors":"Hanqi Guo, He Xiao, Xiaoru Yuan","doi":"10.1109/PACIFICVIS.2011.5742368","DOIUrl":null,"url":null,"abstract":"In this paper, we present an effective transfer function (TF) design for multivariate volume, providing tightly coupled views of parallel coordinates plot (PCP), MDS-based dimension projection plots, and volume rendered image space. In our design, the PCP showing the data distribution of each variate dimension and the MDS showing reduced dimensional features are integrated seamlessly to provide flexible feature classification for the user without context switching between different data presentations. Our proposed interface enables users to identify interested clusters and assign optical properties with lassos, magic wand and other tools. Furthermore, sketching directly on the volume rendered images has been implemented to probe and edit features. To achieve interactivity, octree partitioning with Gaussian Mixture Model (GMM), and other data reduction techniques are applied. Our experiments show that the proposed method is effective for multidimensional TF design and data exploration.","PeriodicalId":127522,"journal":{"name":"2011 IEEE Pacific Visualization Symposium","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Pacific Visualization Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2011.5742368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

In this paper, we present an effective transfer function (TF) design for multivariate volume, providing tightly coupled views of parallel coordinates plot (PCP), MDS-based dimension projection plots, and volume rendered image space. In our design, the PCP showing the data distribution of each variate dimension and the MDS showing reduced dimensional features are integrated seamlessly to provide flexible feature classification for the user without context switching between different data presentations. Our proposed interface enables users to identify interested clusters and assign optical properties with lassos, magic wand and other tools. Furthermore, sketching directly on the volume rendered images has been implemented to probe and edit features. To achieve interactivity, octree partitioning with Gaussian Mixture Model (GMM), and other data reduction techniques are applied. Our experiments show that the proposed method is effective for multidimensional TF design and data exploration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于柔性维投影嵌入平行坐标的多维传递函数设计
在本文中,我们提出了一种有效的多变量体传递函数(TF)设计,提供了平行坐标图(PCP)、基于mds的维度投影图和体渲染图像空间的紧密耦合视图。在我们的设计中,显示每个变量维度的数据分布的PCP和显示降维特征的MDS无缝集成,为用户提供灵活的特征分类,而无需在不同的数据表示之间切换上下文。我们提出的界面使用户能够识别感兴趣的簇,并使用套索,魔术棒和其他工具分配光学属性。此外,还实现了直接在体渲染图像上绘制草图,以探测和编辑特征。为了实现交互性,应用了高斯混合模型(GMM)的八叉树划分和其他数据约简技术。实验表明,该方法对多维TF设计和数据挖掘是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright page An advanced network visualization system for financial crime detection Static correlation visualization for large time-varying volume data Keynote address: Why everyone seems to be using spring embedders for network visualization, and should not Dual space analysis of turbulent combustion particle data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1