An Adaptive Synchronization Technique for Parallel Simulation of Networked Clusters

Ayose Falcón, P. Faraboschi, Daniel Ortega
{"title":"An Adaptive Synchronization Technique for Parallel Simulation of Networked Clusters","authors":"Ayose Falcón, P. Faraboschi, Daniel Ortega","doi":"10.1109/ISPASS.2008.4510735","DOIUrl":null,"url":null,"abstract":"Computer clusters are a very cost-effective approach for high performance computing, but simulating a complete cluster is still an open research problem. The obvious approach - to parallelize individual node simulators - is complex and slow. Combining individual parallel simulators implies synchronizing their progress of time. This can be accomplished with a variety of parallel discrete event simulation techniques, but unfortunately any straightforward approach introduces a synchronization overhead causing up two orders of magnitude of slowdown with respect to the simulation speed of an individual node. In this paper we present a novel adaptive technique that automatically adjusts the synchronization boundaries. By dynamically relaxing accuracy over the least interesting computational phases we dramatically increase performance with a marginal loss of precision. For example, in the simulation of an 8-node cluster running NAMD (a parallel molecular dynamics application) we show an acceleration factor of 26x over the deterministic \"ground truth\" simulation, at less than a 1% accuracy error.","PeriodicalId":137239,"journal":{"name":"ISPASS 2008 - IEEE International Symposium on Performance Analysis of Systems and software","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPASS 2008 - IEEE International Symposium on Performance Analysis of Systems and software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2008.4510735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Computer clusters are a very cost-effective approach for high performance computing, but simulating a complete cluster is still an open research problem. The obvious approach - to parallelize individual node simulators - is complex and slow. Combining individual parallel simulators implies synchronizing their progress of time. This can be accomplished with a variety of parallel discrete event simulation techniques, but unfortunately any straightforward approach introduces a synchronization overhead causing up two orders of magnitude of slowdown with respect to the simulation speed of an individual node. In this paper we present a novel adaptive technique that automatically adjusts the synchronization boundaries. By dynamically relaxing accuracy over the least interesting computational phases we dramatically increase performance with a marginal loss of precision. For example, in the simulation of an 8-node cluster running NAMD (a parallel molecular dynamics application) we show an acceleration factor of 26x over the deterministic "ground truth" simulation, at less than a 1% accuracy error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络集群并行仿真的自适应同步技术
计算机集群是一种非常经济有效的高性能计算方法,但是模拟一个完整的集群仍然是一个开放的研究问题。显而易见的方法——并行化单个节点模拟器——既复杂又缓慢。组合单个并行模拟器意味着同步它们的时间进度。这可以通过各种并行离散事件模拟技术来实现,但不幸的是,任何直接的方法都会引入同步开销,导致单个节点的模拟速度降低两个数量级。本文提出了一种自动调整同步边界的自适应技术。通过在最不感兴趣的计算阶段动态放松精度,我们可以在精度损失很小的情况下显着提高性能。例如,在运行NAMD(一个并行分子动力学应用程序)的8节点集群的模拟中,我们显示了比确定性“真实”模拟的26倍的加速因子,精度误差小于1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scientific Computing Applications on a Stream Processor HMMer-Cell: High Performance Protein Profile Searching on the Cell/B.E. Processor Dynamic Thermal Management through Task Scheduling Program Phase Detection based on Critical Basic Block Transitions Trace-based Performance Analysis on Cell BE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1