Detection of Adverse Reaction to Drugs in Elderly Patients through Predictive Modeling

R. Carrasco
{"title":"Detection of Adverse Reaction to Drugs in Elderly Patients through Predictive Modeling","authors":"R. Carrasco","doi":"10.9781/ijimai.2016.368","DOIUrl":null,"url":null,"abstract":"Geriatrics Medicine constitutes a clinical research field in which data analytics, particularly predictive modeling, can deliver compelling, reliable and long-lasting benefits, as well as non-intuitive clinical insights and net new knowledge. The research work described in this paper leverages predictive modeling to uncover new insights related to adverse reaction to drugs in elderly patients. The differentiation factor that sets this research exercise apart from traditional clinical research is the fact that it was not designed by formulating a particular hypothesis to be validated. Instead, it was data-centric, with data being mined to discover relationships or correlations among variables. Regression techniques were systematically applied to data through multiple iterations and under different configurations. The obtained results after the process was completed are explained and discussed next.","PeriodicalId":143152,"journal":{"name":"Int. J. Interact. Multim. Artif. Intell.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Interact. Multim. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9781/ijimai.2016.368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Geriatrics Medicine constitutes a clinical research field in which data analytics, particularly predictive modeling, can deliver compelling, reliable and long-lasting benefits, as well as non-intuitive clinical insights and net new knowledge. The research work described in this paper leverages predictive modeling to uncover new insights related to adverse reaction to drugs in elderly patients. The differentiation factor that sets this research exercise apart from traditional clinical research is the fact that it was not designed by formulating a particular hypothesis to be validated. Instead, it was data-centric, with data being mined to discover relationships or correlations among variables. Regression techniques were systematically applied to data through multiple iterations and under different configurations. The obtained results after the process was completed are explained and discussed next.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用预测模型检测老年患者药物不良反应
老年医学是一个临床研究领域,其中数据分析,特别是预测建模,可以提供引人注目的、可靠的和持久的好处,以及非直觉的临床见解和全新的知识。本文描述的研究工作利用预测建模来揭示与老年患者药物不良反应相关的新见解。将这项研究与传统临床研究区分开来的差异化因素是,它不是通过制定一个特定的假设来验证的。相反,它是以数据为中心的,通过挖掘数据来发现变量之间的关系或相关性。通过多次迭代和不同配置,系统地将回归技术应用于数据。对工艺完成后得到的结果进行了说明和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Yield Curve as a Recession Leading Indicator. An Application for Gradient Boosting and Random Forest Variational Learning for the Inverted Beta-Liouville Mixture Model and Its Application to Text Categorization Why the Future Might Actually Need Us: A Theological Critique of the 'Humanity-As-Midwife-For-Artificial-Superintelligence' Proposal Artificial Canaries: Early Warning Signs for Anticipatory and Democratic Governance of AI Music Boundary Detection using Convolutional Neural Networks: A comparative analysis of combined input features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1