High-Speed Low-Power Frequency Divider with Intrinsic Phase Rotator

S. Henzler, S. Koeppe
{"title":"High-Speed Low-Power Frequency Divider with Intrinsic Phase Rotator","authors":"S. Henzler, S. Koeppe","doi":"10.1145/1165573.1165641","DOIUrl":null,"url":null,"abstract":"A CMOS divider concept without static power consumption, except leakage power, is proposed. The circuit divides an input signal by two and generates four phases with highly accurate phase skew of 90 degrees. In a 90nm low-power CMOS technology, the maximum operation frequency is 11.6 GHz for a supply voltage of 1.5V slow process and worst case operation parameters. Higher frequencies can be achieved by a hybrid approach where the signal is first divided by a factor of two in a single CML stage and then by the proposed circuit by another factor of two for the generation of the four phases. The divider is applied to dual modulus pre-scalers and IQ receivers. A variant of the circuit contains an intrinsic phase-rotator, so the power consumption of the pre-scaler is not only reduced due to the logic style but also by a simplified architecture of the overall pre-scaler","PeriodicalId":119229,"journal":{"name":"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1165573.1165641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A CMOS divider concept without static power consumption, except leakage power, is proposed. The circuit divides an input signal by two and generates four phases with highly accurate phase skew of 90 degrees. In a 90nm low-power CMOS technology, the maximum operation frequency is 11.6 GHz for a supply voltage of 1.5V slow process and worst case operation parameters. Higher frequencies can be achieved by a hybrid approach where the signal is first divided by a factor of two in a single CML stage and then by the proposed circuit by another factor of two for the generation of the four phases. The divider is applied to dual modulus pre-scalers and IQ receivers. A variant of the circuit contains an intrinsic phase-rotator, so the power consumption of the pre-scaler is not only reduced due to the logic style but also by a simplified architecture of the overall pre-scaler
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带本征相位旋转器的高速低功率分频器
提出了一种除漏功率外无静态功耗的CMOS分频器概念。该电路将输入信号一分为二,产生四个相位,相位偏差为90度,精度很高。在90nm低功耗CMOS技术中,在供电电压为1.5V的慢工艺和最坏情况下,最大工作频率为11.6 GHz。更高的频率可以通过混合方法来实现,其中信号首先在单个CML级中除以两个因子,然后由所建议的电路再除以另外两个因子来产生四个相位。该分频器应用于双模预标器和IQ接收机。该电路的一种变体包含一个固有的相位旋转器,因此预标器的功耗不仅由于逻辑风格而降低,而且由于整体预标器的简化结构而降低
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Dynamic Power Cutoff Technique (DPCT) for Active Leakage Reduction in Deep Submicron CMOS Circuits Dynamic Thermal Clock Skew Compensation using Tunable Delay Buffers Power Reduction in an H.264 Encoder Through Algorithmic and Logic Transformations An Efficient Chip-level Time Slack Allocation Algorithm for Dual-Vdd FPGA Power Reduction Energy-efficient Motion Estimation using Error-Tolerance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1