Neural network training for complex industrial applications

H. Vanlandingham, F. Azam, W. Pulliam
{"title":"Neural network training for complex industrial applications","authors":"H. Vanlandingham, F. Azam, W. Pulliam","doi":"10.1109/SMCIA.2001.936720","DOIUrl":null,"url":null,"abstract":"The paper presents two methods of training multilayer perceptrons (MLPs) that use both functional values and co-located derivative values during the training process. The first method extends the standard backpropagation training algorithm for MLPs whereas the second method employs genetic algorithms (GAs) to find the optimal neural network weights using both functional and co-located function derivative values. The GAs used for optimization of the weights of a feedforward artificial neural network use a special reordering of the genotype before recombination. The ultimate goal of this research effort is to be able to train and design an artificial neural networks (ANN) more effectively, i.e., to have a network that generalizes better, learns faster and requires fewer training data points. The initial results indicate that the methods do, in fact, provide good generalization while requiring only a relatively sparse sampling of the function and its derivative values during the training phase, as indicated by the illustrative examples.","PeriodicalId":104202,"journal":{"name":"SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMCIA.2001.936720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents two methods of training multilayer perceptrons (MLPs) that use both functional values and co-located derivative values during the training process. The first method extends the standard backpropagation training algorithm for MLPs whereas the second method employs genetic algorithms (GAs) to find the optimal neural network weights using both functional and co-located function derivative values. The GAs used for optimization of the weights of a feedforward artificial neural network use a special reordering of the genotype before recombination. The ultimate goal of this research effort is to be able to train and design an artificial neural networks (ANN) more effectively, i.e., to have a network that generalizes better, learns faster and requires fewer training data points. The initial results indicate that the methods do, in fact, provide good generalization while requiring only a relatively sparse sampling of the function and its derivative values during the training phase, as indicated by the illustrative examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂工业应用的神经网络训练
本文提出了两种训练多层感知器(mlp)的方法,即在训练过程中同时使用函数值和共定位导数值。第一种方法扩展了mlp的标准反向传播训练算法,而第二种方法使用遗传算法(GAs)来使用泛函数和共定位函数导数值来找到最优神经网络权重。用于优化前馈人工神经网络权重的遗传算法在重组前对基因型进行了特殊的重排序。这项研究的最终目标是能够更有效地训练和设计一个人工神经网络(ANN),即拥有一个泛化更好、学习更快、需要更少训练数据点的网络。初步结果表明,这些方法实际上提供了良好的泛化,同时在训练阶段只需要对函数及其导数值进行相对稀疏的采样,如说明性示例所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic identification of dynamical systems with static nonlinearities Scientific data mining with StripMiner/sup TM/ Learning from experience using a decision-theoretic intelligent agent in multi-agent systems Immune network simulation of reactive control of a robot arm manipulator Advancing the human experience with interactive evolutionary computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1