Learning from experience using a decision-theoretic intelligent agent in multi-agent systems

F. Sahin, J. Bay
{"title":"Learning from experience using a decision-theoretic intelligent agent in multi-agent systems","authors":"F. Sahin, J. Bay","doi":"10.1109/SMCIA.2001.936739","DOIUrl":null,"url":null,"abstract":"This paper proposes a decision-theoretic intelligent agent model to solve a herding problem and studies the learning from experience capabilities of the agent model. The proposed intelligent agent model is designed by combining Bayesian networks (BN) and influence diagrams (ID). The online Bayesian network learning method is proposed to accomplish the learning from experience. Intelligent agent software, IntelliAgent, is written to realize the proposed intelligent agent model and to simulate the agents in a problem domain. The same software is then used to simulate the herding problem with one sheep and one dog. Simulation results show that the proposed intelligent agent is successful in establishing a goal (herding) and learning other agents' behaviors.","PeriodicalId":104202,"journal":{"name":"SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504)","volume":"343 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMCIA.2001.936739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper proposes a decision-theoretic intelligent agent model to solve a herding problem and studies the learning from experience capabilities of the agent model. The proposed intelligent agent model is designed by combining Bayesian networks (BN) and influence diagrams (ID). The online Bayesian network learning method is proposed to accomplish the learning from experience. Intelligent agent software, IntelliAgent, is written to realize the proposed intelligent agent model and to simulate the agents in a problem domain. The same software is then used to simulate the herding problem with one sheep and one dog. Simulation results show that the proposed intelligent agent is successful in establishing a goal (herding) and learning other agents' behaviors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多智能体系统中决策理论智能体的经验学习
本文提出了一种解决羊群问题的决策理论智能代理模型,并研究了该模型的经验学习能力。将贝叶斯网络(BN)和影响图(ID)相结合,设计了智能代理模型。提出了在线贝叶斯网络学习方法来实现经验学习。编写了智能代理软件IntelliAgent来实现所提出的智能代理模型,并对问题域中的智能代理进行仿真。然后用同样的软件来模拟一只羊和一只狗的放牧问题。仿真结果表明,所提出的智能体能够成功地建立目标(羊群)并学习其他智能体的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Issue Information
IF 9.4 1区 生物学New PhytologistPub Date : 2022-06-30 DOI: 10.1111/nph.17495
Issue Information - Publisher Information
IF 2.1 4区 医学Australian dental journalPub Date : 2016-12-14 DOI: 10.1111/adj.12490
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic identification of dynamical systems with static nonlinearities Scientific data mining with StripMiner/sup TM/ Learning from experience using a decision-theoretic intelligent agent in multi-agent systems Immune network simulation of reactive control of a robot arm manipulator Advancing the human experience with interactive evolutionary computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1